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Abstract

Nonlinear wave models are commonly used to provide a reduced-order description of distillation column dynamics. Due to the simplified
model structure, on-line parameter estimation is typically required for satisfactory prediction of column performance. In this paper an approach
for selecting stage composition/temperature measurements for on-line estimation of wave model parameters is presented. We focus on high
purity distillation columns which are particularly challenging due to the presence of highly pinched composition profiles. The proposed method
provides a compromise between two competing effects, the sensitivity of stage composition predictions to model parameters and collinearities
between these sensitivities. An iterative calculation procedure based on a scaled sensitivity matrix yields a ranking of the stage compositions
according to their usefulness for parameter estimation. Two high purity column simulators are used to illustrate the measurement selection
procedure and the subsequent design of nonlinear state/parameter estimators using the extended Kalman filtering approach. The proposed
method is shown to be more flexible than a conventional measurement selection technique based on singular value decomposition.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Control system design for high purity distillation columns is
inherently difficult due to nonlinear process dynamics and the
complexity of rigorous column models. Although other non-
linear controller design strategies have been proposed, nonlin-
ear model predictive control (NMPC) appears to be the most
promising technology for nonlinear processes such as distil-
lation columns characterized by multivariable interactions and
operational constraints (Henson, 1998; Mayne et al., 2000).
The NMPC approach requires repeated on-line solution of an
open-loop optimal control problem over a prediction horizon
into the future. An objective function involving the deviation
of predicted controlled outputs from their setpoint values is
minimized by treating the manipulated inputs as decision vari-
ables. Simultaneous solution methods involve temporal dis-
cretization of the model equations to yield a large set of non-
linear algebraic equations which are posed as constraints in a
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nonlinear programming problem (Biegler et al., 2002; Mead-
ows and Rawlings, 1997). The computational difficulty of the
NMPC problem is intimately connected with the complexity of
the controller design model.

Rigorous distillation column models are comprised of non-
linear differential and algebraic equations involving stage
compositions, temperatures and holdups. Due to their high
dimensionality, these models are difficult to incorporate within
NMPC controllers. A promising sequential solution strategy
based on specialized multiple shooting and reduced successive
quadratic programming techniques has been successfully ap-
plied to a distillation column of moderate complexity (Nagy
et al., 2000). However, there is clear motivation to develop sim-
pler nonlinear models that capture the essential column dynam-
ics. A popular approach is nonlinear wave modeling where the
high order column dynamics are reduced to a single differential
equation for the traveling composition or temperature wave in
each column section (Gilles and Retzbach, 1983; Hwang, 1987;
Hwang and Helfferich, 1988; Luyben, 1972; Marquardt, 1986;
Zhu et al., 2001). A dramatic reduction in model dimensionality
is achieved by exploiting the traveling wave nature of column
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profiles and through the introduction of several simplifying as-
sumptions such as a binary mixture, ideal vapor–liquid equi-
librium, equimolar overflow and constant holdups.

A common problem observed with nonlinear wave models is
that they are incapable of generating accurate predictions over
a wide range of operating conditions due to these simplifying
assumptions. Several investigators have proposed nonlinear pa-
rameter estimation as a means to improve wave model predic-
tions (Balasubramhanya and Doyle, 1997; Bian et al., 2005;
Rehm and Allgower, 1996). Stage composition and/or temper-
ature measurements are used to generate on-line estimates of
key wave model parameters and the unmeasured wave posi-
tion. An important consideration is the selection of appropri-
ate measurement locations for this on-line state and parame-
ter estimation problem. Measurement selection is particularly
critical for high purity columns with highly pinched profiles.
Measurements located within pinched regions do not provide
useful information for wave parameter estimation because they
are insensitive to changes in profile position and shape.

General measurement selection techniques based on sin-
gular value decomposition (SVD) (Oisiovici and Cruz, 2001)
and various information theoretic and data reconciliation met-
rics (Bagajewicz, 1997; Chmielewski et al., 2002; Muske and
Georgakis, 2003) have been proposed. Limitations of SVD
based methods include: (1) the number of selected measure-
ments must equal the number of estimated variables; and (2)
the algorithm is not designed to allow a priori inclusion of
preselected measurements. The first limitation is particularly
important for high purity columns where additional stage
composition measurements may be needed to account for the
movement of pinched regions resulting from changes in col-
umn operating conditions. The second limitation is relevant
for columns which have preexisting measurements that must
be incorporated within the estimator design. The contribution
of this paper is the development and evaluation of a measure-
ment selection technique that can be viewed as an extension
of SVD based methods in the sense that these two limitations
are removed. While this paper focuses entirely on the problem
of measurement selection for state and parameter estimation
in nonlinear wave models, the proposed method is generally
applicable.

The remainder of this paper is organized as follows. A brief
overview of the nonlinear wave modeling approach is presented
in Section 2. The proposed measurement selection procedure is
described in Section 3. Application of the proposed method is
illustrated using a nitrogen purification column (Section 4) and
a benzene–toluene separation column (Section 5). A summary
and conclusions are provided in Section 6.

2. Nonlinear wave modeling

The distillation column is divided into sections according to
the location of feed and side withdrawal streams. Each section is
described by a single differential equation for the wave position
and nonlinear algebraic equations that allow reconstruction of
the binary liquid and vapor composition profiles from the wave
position. The wave position equation is obtained via material

balance across the shock wave (Marquardt, 1986)

w = ds

dt
= 1

Nt

−L(xin − xout) + V (yout − yin)

nl(xin − xout) + nv(yout − yin)
, (1)

where s is the wave position which represents the inflection
point the wave profile; L and V are internal liquid and vapor
molar flow rates, respectively; Nt is the total number of equi-
librium stages in the column section; nl and nv are the liquid
and vapor molar holdups, respectively, of a single stage; xin
and xout are the compositions of the liquid streams entering and
exiting, respectively, the column section; and yin and yout are
corresponding compositions of the liquid streams.

The vapor and liquid composition profiles are calculated from
the wave position s and the relative volatility � as

y(z) = ymin + ymax − ymin

1 + exp[�(z − s)] , (2)

x(z) = y(z)

� − (� − 1)y(z)
, (3)

where z is dimensionless position inside the column section (0
is the bottom and 1 is the top); � is the wave front slope; ymax
and ymin are the upper and lower asymptotical limits, respec-
tively, of the wave profile. The composition of the exiting vapor
stream yout is calculated from (2) with z = 1. The exiting liquid
composition xout is calculated from (2) with z= 0 and (3). The
entering compositions yin and xin are determined from material
balances on the feed/withdrawal stages, condenser and/or re-
boiler that delimit the column section. Therefore, the complete
wave model consists of the wave position equation (1) and the
composition profile equations (2) and (3) written for each col-
umn section combined with mass balances for feed/withdrawal
stages, condenser and reboiler. This compact representation is
the major motivation for using nonlinear wave models as the
basis for nonlinear controller design.

The wave model parameters �, ymax and ymin that determine
the composition profile shape can be estimated off-line from
steady-state composition data (Zhu et al., 2001). These param-
eters are truly constants only for idealized columns of infinite
length (Marquardt, 1986). For real columns with non-ideal be-
havior, the wave model parameters must be adjusted to provide
satisfactory predictions over a range of steady-state operating
points. Several investigators have proposed on-line state and
parameter estimation as a means to improve wave model ac-
curacy (Balasubramhanya and Doyle, 1997; Bian et al., 2005;
Rehm and Allgower, 1996). The first step is to select a set of
composition/temperature measurements that provide sufficient
information on the composition profile behavior. In the next
section, we propose a general and systematic procedure for se-
lecting potential measurements for combined state and param-
eter estimation.

3. Measurement selection procedure

The success of nonlinear state and parameter estimation
strategies is critically dependent on the availability of mea-
surements that adequately characterize process behavior. For
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nonlinear wave models of distillation columns the problem
involves the selection of stage composition and/or temperature
measurements that provide information on the composition
profile. Many columns have existing measurements that should
be utilized to reduce the cost of adding new stream sampling
and composition analysis systems. The measurement selection
problem is particularly challenging for high purity columns
because: (1) the composition profile may be highly pinched
such that measurements located in the pinched region provide
no useful information; and (2) the location of the pinched re-
gion can move dramatically in response to changes in column
operating conditions. Poorly selected measurement locations
can lead to unsatisfactory performance or even divergence of
the combined state/parameter estimator (Bian et al., 2005).

Measurement selection techniques are usually based on the
sensitivity matrix between the estimated parameters and the
candidate measurements. Many methods involve decomposi-
tion of the sensitivity matrix into principal components using
SVD (Luyben, 1973; Oisiovici and Cruz, 2001). The largest
element of each principal component is used to a identify a sin-
gle measurement, thereby yielding a measurement vector with
dimension equal to the number of estimated variables. For high
purity columns such as those studied in this paper, we have
shown that additional measurements may be needed to suc-
cessfully estimate wave model parameters over a wide range of
feed rates (Bian et al., 2005). Furthermore, SVD methods are
not designed to allow a priori inclusion of existing measure-
ments. Below we present a general measurement selection pro-
cedure that overcomes the limitations of existing SVD based
techniques.

The proposed method is based on the scaled sensitivity ma-
trix between the estimated variables and the candidate mea-
surements. For nonlinear wave models the estimated variables
are the unmeasured wave positions and wave model param-
eters while the candidate measurements are stage composi-
tions. Although not considered in this paper, the selected stage
compositions can be replaced with pressure corrected tempera-
ture measurements to facilitate practical implementation (Bian
et al., 2005). The elements of the scaled sensitivity matrix are
defined as

Kij = �yi/ȳi

�pj/p̄j

, (4)

where p is the vector of estimated variables, y is the vector of
candidate measurements, and p̄ and ȳ are nominal values cor-
responding to a particular steady-state operating point. A large
sensitivity coefficient Kij indicates that the output yi provides
useful information for estimation of the variable pj . The non-
linear wave model equations can be represented as

ds

dt
= f (s, �), (5)

y = g(s, �), (6)

where s is the vector of wave positions and � is the vector
of wave model parameters. The partial derivatives required to

calculate the sensitivity matrix are

�y

�s
= �g(s, �)

�s
, (7)

�y

��
= �g(s, �)

�s

�s

��
+ �g(s, �)

��
. (8)

The partial derivatives with respect to s can be computed an-
alytically as shown. Because an explicit relationship s = h(�)

cannot be constructed, the partial derivatives with respect to �
are computed numerically using finite differences by introduc-
ing 1% changes in the model parameters.

The proposed measurement selection method yields a rank-
ing of the candidate measurements according to their useful-
ness for combined state/parameter estimation. The technique
involves the calculation of two competing measures: (1) the
overall sensitivity of a candidate measurement to changes in the
estimated variables; and (2) the uniqueness of these parameter
effects as reflected by the sensitivity vectors. An iterative calcu-
lation procedure is used to achieve a suitable tradeoff between
the two measures and produce the ranking of candidate mea-
surements. We have previously utilized the selection method
in the development of an output feedback control strategy for
the nitrogen purification column considered in this paper (Bian
et al., 2005).

The iterative algorithm described as follows is an extension
of a parameter selection procedure recently developed by our
group (Li et al., 2004):

1. Calculate the scaled sensitivity matrix K = {Kij =
(�yi/ȳi)/(�pj/p̄j )} where pj , j ∈ [1, q], is the jth es-
timated variable and yi, i ∈ [1, m], is the ith candidate
measurement.

2. Perform principal component analysis (PCA) (Dunteman,
1989) on the covariance matrix: X=KTK ∈ Rmxm. Denote
�i as the ith eigenvalue of X and cji as the jth element of the
ith principle component. The weighted sum of the principle
component elements and their corresponding eigenvalues

Ej =
∑m

i=1 |�icji |∑m
i=1 |�i | ∈ [0, 1] (9)

is a measure of the overall response of the jth measurement
to variations in the estimated variables. Select the candidate
measurement with the largest Ej value as the first measure-
ment.

3. For the second to qth measurements, determine the small-
est distance vector in the space spanned by the sensitivity
vectors of the n measurements already chosen. Assume the
sensitivity vectors sk = [Kk1 Kk2 · · · Kkq ]T are linearly
independent for k ∈ [1, n] where 1�n < q. Otherwise, the
sensitivity vectors of the remaining measurements are nec-
essarily linearly dependent with the sensitivity vectors of
the measurements already chosen and the algorithm must be
terminated. Any vector s̄ in the n-dimensional vector space
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Fig. 1. Determination of the collinearity measure.

Sn can be expressed as

s̄ =
n∑

k=1

aksk , (10)

where the ak are constants. Consider the sensitivity vector
sj associated with a candidate measurement not already se-
lected. The vector closest to sj in the space Sn is determined
as

min
ak

1

2
(sj − s̄)T(sj − s̄). (11)

The determination of the minimum distance vector is illus-
trated in Fig. 1 for the simple case where two measurements
with sensitivity vectors s1 and s2 have already been chosen.
Compute the following measure dj ∈ [0, 1] that quantifies
the degree of collinearity between the candidate sensitivity
vector sj and the minimum distance sensitivity vector s̄:

dj = sin

[
cos−1

(
sT
j s̄

‖sj‖ · ‖s̄‖

)]
, (12)

where ‖ · ‖ represents the Euclidean norm. Measurements
with large dj values are favored for selection because they
provide unique information compared to the measurements
already chosen. Calculate the identifiability indices Ij =
Ejdj ∈ [0, 1]. Select the candidate measurement with the
largest Ij value as the next measurement.

4. For the (q+1)th to mth measurements, form all possible
(p–1)-tuples of the previously selected measurements. The
number of possible combinations is

r = k!
(q − 1)!(k − q + 1)! , q + 1�k�m. (13)

Use (12) to compute the linear independence metric dr,j

with respect to the j candidate measurements for all r possi-
ble combinations. Determine the worst case over all possible
combinations: dj =minrdr,j . Calculate the identifiability in-
dex Ij for each candidate measurement. Select the candidate
measurement with the largest Ij value as the next measure-
ment. Terminate the algorithm when all the measurements
have been selected.

This iterative algorithm yields a ranking of all candidate mea-
surements according to their expected information content. As
shown below for two high purity distillation columns, the actual

number of measurements needed for successful state and pa-
rameter estimation must be determined by simulation study. We
have found that robust estimator performance can be achieved
over a range of column operating conditions with only one more
measurement than the number of estimated variables. There-
fore, the selection algorithm can be terminated soon after the
number of ranked measurement exceeds the number of esti-
mated variables. This simplification allows the possible com-
binatorial explosion of measurement combinations in step 4 to
be avoided.

An inherent limitation of the proposed method is that mea-
surement selection is based entirely on the steady-state sensi-
tivity matrix. The shortcomings of this approach include: (1)
the actual information content of the candidate measurements
under typical operating conditions is not considered; (2) the
measurement rankings obtained are local and dependent on the
steady state chosen as the base case; and (3) dynamic and non-
linear effects are neglected. In the case studies presented below,
we indirectly address the nonlinearity problem by utilizing a
composite sensitivity matrix obtained by averaging over several
steady states. While other extensions are possible, the remain-
der of this paper is focused on evaluating the effectiveness of
the basic measurement selection strategy described above.

4. Nitrogen purification column

4.1. Model formulation

The nitrogen purification column is the simplest distilla-
tion column in a typical cryogenic air separation plant (Isalski,
1989). A liquid distributor is placed in the middle of the packed
column to improve the flow characteristics of the descending
liquid. A reboiler is not necessary because an air feed stream
with a high vapor fraction is introduced to the bottom of the
column. The liquid level in the bottoms sump is controlled by
adjusting the bottoms liquid flow rate. The overhead vapor is
split into the vapor nitrogen product and a stream introduced
to a total condenser. Most of the condensate is returned to the
column as reflux with only a small portion withdrawn as the
liquid nitrogen product. The liquid level in the reflux drum is
controlled using the reflux flow rate. A detailed simulation of
the nitrogen purification column was built in Aspen Dynamics
with thermodynamic data for the ternary mixture of nitrogen,
oxygen and argon provided by Praxair. The simulator was em-
ployed as a surrogate plant in our on-line estimation studies.
The nominal column operating conditions used are shown in
Table 1. Four other steady states corresponding to feed flow
rate changes of ±5 kmol/h and ±10 kmol/h from the nominal
value were investigated to cover a reasonably large range of
operating conditions.

Because the nitrogen column only contains a rectifying sec-
tion, a single wave equation is sufficient to model the column
dynamics. Several assumptions were invoked to simplify wave
model construction: (1) air can be treated as a pseudo-binary
mixture with nitrogen and argon lumped into a single compo-
nent with the thermodynamic properties of nitrogen; and (2)
the dynamics of the feed stage, liquid distributor and condenser
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Table 1
Nominal operating conditions for nitrogen purification column

Variable Symbol (units) Value

Feed flow rate F (kmol/h) 98.4
Feed vapor fraction q (kmol/kmol) 0.963
Feed O2 composition zf (kmol/kmol) 0.2096
Top stage vapor composition yout (ppm) 2.81
Average liquid holdup on each stage nl (kmol) 0.0852
Average vapor holdup on each stage nv (kmol) 0.0186
Liquid product flow rate LN2 (kmol/h) 0.117
Vapor product flow rate GN2 (kmol/h) 49.134
Reflux flow rate L (kmol/h) 45.508
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Fig. 2. Open-loop simulation results for the nitrogen purification column.

are negligible compared to the column dynamics. The large liq-
uid holdup of the distributor was divided equally between the
41 equilibrium stages. The resulting wave model consists of
a single nonlinear differential equation for the wave position
and six nonlinear algebraic equations for the feed stage, total
condenser and vapor–liquid equilibrium relations. Additional
details on the formulation of the nonlinear wave model are pro-
vided in our previous publications (Bian et al., 2005; Zhu et al.,
2001). Nominal values of the wave parameters were regressed
using least-squares estimation

min
s,�,ymax,ymin

Nt∑
i=1

[yp(zi) − ŷ(zi)]2, (14)

where zi is the dimensionless column position with 0 being the
bottom and 1 being the top; Nt is the number of data points;
yp(zi) is the vapor composition obtained from the Aspen sim-
ulator; and ŷ(zi) is the predicted vapor composition calculated
from (2). A comparison of steady-state composition profiles
obtained from the Aspen simulator and the wave model with
the nominal parameter values are shown in Fig. 2. Satisfactory
results were produced at the nominal operating point because
the wave parameters were adjusted to compensate for modeling
errors introduced by the wave model assumptions. Poor pre-

Table 2
Measurement selection results for the nitrogen purification column

Method Steady-state 1st 2nd 3rd 4th 5th 6th

PCA Nominal 1 32 40 25 36 15
PCA F − 5 kmol/h 3 9 1 6 11 41
PCA F − 10 kmol/h 1 7 4 2 5 8
PCA F + 5 kmol/h 33 1 40 37 21 39
PCA F + 10 kmol/h 30 38 40 1 21 35
PCA Averaged gain 1 33 12 40 3 41
SVD Nominal 1 32 41 N/A N/A N/A
SVD F − 5 kmol/h 3 9 1 N/A N/A N/A
SVD F − 10 kmol/h 1 7 4 N/A N/A N/A
SVD F + 5 kmol/h 33 1 41 N/A N/A N/A
SVD F + 10 kmol/h 30 38 41 N/A N/A N/A
SVD Averaged gain 1 33 12 N/A N/A N/A

dictions were obtained at the other three steady states, thereby
motivating the development of an on-line estimation strategy.

4.2. Measurement selection and estimator design

We performed off-line estimation of the wave model pa-
rameters for five steady states corresponding to feed flow rate
changes of ±5 kmol/h and ±10 kmol/h from the nominal
value. Although not shown here, the lower asymptotic limit
ymin exhibited only small variations over this range of operat-
ing conditions. Therefore, ymin was fixed at zero and the wave
position s, wave front slope � and upper asymptotic limit ymax
were treated as the estimated variables. The liquid composi-
tion on each equilibrium stage was considered as a candidate
measurement, yielding a total of 41 possible measurement lo-
cations. All compositions were natural log transformed since
the oxygen content in the upper part of the column is at ppm
levels. Table 2 provides a comparison of the measurement rank-
ings obtained with the proposed PCA based technique and the
standard SVD method (Oisiovici and Cruz, 2001). Results are
shown for five different steady states and an “averaged gain”
case where the measurement selection methods were applied
to an composite gain matrix obtained by element-by-element
averaging of the gain matrices at the five steady states. The
averaged gain case was intended to generate rankings that are
appropriate over a range of operating conditions rather than a
single steady-state.

The measurement rankings obtained with the PCA method
are easily interpreted using the corresponding Aspen composi-
tion profiles. The following trends are observed: (1) the stage
one composition was always selected due to its large gain when
the compositions were log transformed; (2) the highest ranked
measurements were located near the wave position (inflection
point) because compositions in this range were very sensitive
to small parameter changes; (3) adjacent stage compositions
were not favored due to their high collinearities; and (4) stages
located in highly pinched regions of the composition profile
were not chosen because of their small gains. Similar trends
were observed with SVD method. The two highest ranked mea-
surements obtained with each selection method were identical,



S. Bian, M.A. Henson / Chemical Engineering Science 61 (2006) 3210–3222 3215

0 2 4 6

-20

-15

-10

ln
 (

y o
ut

)

0 2 4 6
-15

-10

-5
ln

 (
x 1

2)

0 2 4 6

-4

-2

0

ln
 (

x 3
3)

0 2 4 6
-1.5

-1

-0.5

ln
 (

x 4
0)

 

0 2 4 6
-0.2

0

0.2

0.4

s

0 2 4 6
10

15

20

γ

0 2 4 6
0

0.2

0.4

0.6

0.8

y m
ax

time (hr)

estimated
measured

Fig. 3. Estimator performance for an increase in the air feed flow rate.

and only small differences were observed for the third mea-
surement. However, SVD method is not capable of ranking
more measurements than the number of estimated variables.
Therefore, the proposed PCA method can be loosely viewed as
an extension without this limitation on the number of ranked
measurements. Below we show that this distinction is critically
important when the number of on-line measurements must ex-
ceed the number of estimated variables to obtain satisfactory
estimator performance.

Combined state and parameter estimation was performed
with a discrete-time formulation of the first-order extended
Kalman filter (EKF) (Gelb, 1974; Muske and Edgar, 1997).
At each time step the nonlinear wave model was linearized
at the previous estimates and the filter gain was evaluated us-
ing the discrete Riccati equation. We found that four measure-
ments were needed to robustly estimate the three wave variables
(s, �, ymax) over a range of operating conditions. The fourth
measurement was required to avoid observability problems re-
sulting in estimator divergence when one measurement became
located in a highly pinched region of the composition profile.
The four measurements used were obtained directly from the
PCA averaged gain entry in Table 2: the top stage vapor com-
position (yout) and the liquid compositions on stages 12, 33 and
40. Because there are insufficient degrees of freedom to obtain
bias free estimates of all four measurements, the EKF covari-
ances were tuned to localize the bias to the intermediate stage
composition x12. Additional details about the EKF formula-
tion and tuning are available in our previous publication (Bian
et al., 2005).

4.3. Simulation results

Fig. 3 shows the performance of the EKF when the air feed
flow rate was increased by 10 kmol/h at t = 1 h. The Aspen
composition wave moved downward in the column because the
positive change in the feed flow rate induced a reflux flow rate
increase. The EKF produced rapid and unbiased tracking of
yout, x33 and x40, while the x12 estimate was biased due to the
EKF tuning used. Although achieved only temporarily, a neg-
ative estimate of the wave position s is physically meaningful
when the inflection point of the composition profile moves out-
side the column. Due to end effects not captured by the wave
model (Marquardt, 1986), the wave became sharper when the
inflection point approached the bottom of the column. The EKF
compensated for this unmodeled effect by increasing the esti-
mate of the wave slope parameter �. While the upper asymptotic
limit ymax increased transiently, the initial and final steady-state
values were very similar.

Fig. 4 shows composition profiles reconstructed from the
EKF state and parameter estimates for the 10 kmol/h increase
in the air feed flow rate. The symbols are Aspen values and the
solid lines are EKF reconstructed profiles at the indicated times.
The EKF provided excellent agreement with the Aspen profiles,
particularly at the new steady-state. Reconstructed composition
profiles for five different steady states are shown in Fig. 5. The
EKF produced satisfactory agreement with each Aspen profile
despite the large movement of the composition profile that oc-
curred over this range of feed flow rates. Although not shown
here, stable estimator performance could not be obtained with
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Fig. 4. Reconstructed dynamic composition profiles for an increase in the air
feed flow rate.
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Fig. 5. Reconstructed steady-state composition profiles for the nitrogen pu-
rification column.

only three composition measurements due to the movement of
the highly pinched region. A comparison of these results with
the open-loop estimation results in Fig. 5 clearly demonstrates
the value of on-line estimation with rationally selected mea-
surement locations for this ultra high purity nitrogen purifica-
tion column.

5. Benzene–toluene separation column

5.1. Model formulation

Now we consider the benzene–toluene separation column
in the HDA process for benzene production (Douglas, 1988).
The trayed column has a total of 22 equilibrium stages includ-
ing the reboiler and a total condenser. A ternary mixture of
benzene, toluene and trace amounts of diphenyl is introduced

at stage 13. The overhead product is purified benzene while
the bottoms product is mainly toluene with residual benzene
and a small amount of diphenyl. A dynamic simulation of the
benzene–toluene column was constructed in Aspen dynamics
and utilized as a surrogate plant in our simulation studies. The
nominal operating conditions of the Aspen simulator are shown
in Table 3. Two other steady states corresponding to feed flow
rate changes of ±10% of the nominal value were also inves-
tigate to cover a reasonable range of column operating condi-
tions.

Because the benzene–toluene column has both stripping
and rectifying sections, two nonlinear waves were required to
model the column dynamics. The dynamics of the feed stage,
condenser and reboiler were neglected since their holdups
were much smaller than the total holdup of each column
section. Therefore, the two waves were connected through a
steady-state composition balance on the feed stage. A pseudo-
binary feed mixture was constructed with toluene and diphenyl
lumped into a single component. Ideal vapor–liquid equilib-
rium was assumed with a constant relative volatility regressed
from Aspen composition profile data. The complete wave
model consisted of two nonlinear differential equations for
the wave positions and 11 nonlinear algebraic equations for
steady-state feed stage, reboiler and condenser balances and
the vapor–liquid equilibrium relations. Nominal values of the
two wave positions (sr , ss) and the six wave profile parameters
(�r , ymin,r , ymax,r , �s , ymin,s , ymax,s) were regressed from the
nominal Aspen composition profile. Fig. 6 shows open-loop
composition profile predictions obtained with the nominal
wave parameters for three different steady states. As expected,
excellent agreement with the Aspen composition profile was
obtained at the nominal operating point. Unsatisfactory agree-
ment was obtained in the rectifying section for the F + 10%
change and in the stripping section for the F − 10% change
due to wave distortion caused by end effects and non-ideal
column behavior.

5.2. Measurement selection and estimator design

Off-line estimation at the nominal, F − 10% and F + 10%
steady states was used to determine the wave profile parame-
ters included in the on-line estimation problem. The rectifying
upper asymptotical limit (ymax,r ) and the stripping lower
asymptotical limit (ymin,s) exhibited very small variations be-
tween the three steady-states. Consequently, we fixed ymin,s =0
and ymax,r = 1, and treated the two wave positions (sr , ss)

and the four remaining parameters (�r , ymin,r , �s , ymax,s) as
estimated variables. The vapor composition of each stage and
the reboiler liquid composition were considered as candidate
measurements. A comparison of the measurement rankings
obtained with the proposed PCA based technique and the
SVD method are shown in Table 4 for the same steady states
and the averaged gain case. The two methods produced iden-
tical rankings of the first three measurements, but different
rankings of the next three measurements due to algorithmic
differences.
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Table 3
Nominal operating conditions for benzene–toluene column

Variable Symbol (units) Value

Feed flow rate F (kmol/h) 134.7
Feed vapor fraction q (kmol/kmol) 0
Feed benzene composition zf (kmol/kmol) 0.532
Top stage vapor composition yout (kmol/kmol) 0.9934
Reboiler liquid composition xB (kmol/kmol) 0.0121
Average liquid holdup on each stage (rectifying section) nl,r (kmol) 1.038
Average vapor holdup on each stage (rectifying section) nv,r (kmol) 0.0407
Average liquid holdup on each stage (striping section) nl,s (kmol) 1.058
Average vapor holdup on each stage (striping section) nv,s (kmol) 0.0410
Bottom product flow rate B (kmol/h) 63.35
Overhead product flow rate D (kmol/h) 71.37
Reflux flow rate L (kmol/h) 128.4
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Fig. 6. Open-loop simulation results for the benzene–toluene column.

An important advantage of the proposed method is that ex-
isting measurements can be preselected without modifying the
ranking algorithm. The overhead vapor composition of the
benzene–toluene column is typically measured to provide a di-
rect indication of the benzene product purity. Table 5 shows
the results obtained when the overhead vapor composition was
fixed to be the highest ranked measurement and the remaining
measurements were ranked as usual. As expected different rank-
ings of the remaining measurements were obtained compared
to the regular case in Table 4. Unlike the nitrogen purification
column considered earlier, robust estimation over a reasonable
range of feed flow rates was achieved with the same number
of measurements and estimated variables because the compo-
sition profile was not highly pinched. The EKF was designed
to estimate the two wave positions (sr , ss) and the four wave
parameters (�r , ymin,r , �s , ymax,s) using the six highest ranked
measurements for the PCA average gain entry in Table 4 or
5 depending on the case being considered. For both cases the
EKF was readily tuned to provide stable and bias free tracking
of Aspen composition profiles.

Table 4
Measurement selection results for the benzene–toluene column

Method Steady-state 1st 2nd 3rd 4th 5th 6th 7th 8th

PCA Nominal 17 10 14 12 20 6 15 16
PCA F − 10 kmol/h 15 4 12 14 18 1 7 5
PCA F + 10 kmol/h 14 20 11 12 22 18 21 9
PCA Averaged gain 16 12 14 4 21 8 20 1
SVD Nominal 17 10 14 12 18 8 N/A N/A
SVD F − 10 kmol/h 15 4 12 14 1 19 N/A N/A
SVD F + 10 kmol/h 14 20 11 12 18 22 N/A N/A
SVD Averaged gain 16 12 14 22 4 9 N/A N/A

Table 5
Measurement selection results for the benzene–toluene column with stage
one fixed as the highest ranked measurement location

Steady-state 1st 2nd 3rd 4th 5th 6th 7th 8th

Nominal 1 17 14 12 9 20 15 16
F − 10 kmol/h 1 15 12 14 5 18 7 3
F + 10 kmol/h 1 20 14 12 21 10 18 22
Averaged gain 1 16 12 14 21 9 22 19

5.3. Simulation results

Fig. 7 shows EKF performance when the six estimates
were generated from on-line measurements of the stages 4,
8, 12, 14, 16 and 21 vapor compositions as listed in Table 4
for the PCA average gain case. The column was subjected
to a 10% feed flow rate increase at t = 1 h that caused the
Aspen rectifying and stripping composition profiles to move
towards the bottom of their respective sections. The EKF
produced excellent tracking of the six measurements while
generating reasonable state and parameter estimates consis-
tent with a slight sharpening of the stripping section wave
due to end effects. While smoother parameter estimates could
be obtained by retuning the EKF covariance matrices, only
slight improvements were possible due to strong correlations
between parameter effects. For example �s and ymax,s have
very similar effects on the upper part of the stripping section
and the entire rectifying section. Consequently, the parameter
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Fig. 7. Estimator performance for an increase in the feed flow rate.
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Fig. 8. Reconstructed dynamic composition profiles for a feed flow rate
increase to the benzene–toluene column.

estimates required to eliminate estimation bias were not
unique. We suspect that this non-uniqueness problem was
at least partially responsible for the non-smooth parameter
estimates. Transient composition profiles reconstructed from
the EKF state and parameter estimates are shown as solid
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Fig. 9. Reconstructed steady-state profiles of the benzene–toluene column.

lines in Fig. 8. Corresponding steady-state estimation results
are shown in Fig. 9 for three different operating points. The
EKF produced excellent dynamic and steady-state agreement
with the Aspen composition values (symbols) in both column
sections.
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Fig. 10. Estimator performance when the overhead composition is a preselected measurement.

Next EKF performance was evaluated when the six esti-
mates were generated from the available overhead composi-
tion measurement and the next five highest ranked compo-
sition measurements (stages 9, 15, 18, 25 and 27) listed for
the average gain entry in Table 5. Fig. 10 shows predicted
compositions at the six measurement locations along with
the state and parameter estimates for the same feed flow rate
increase considered above. Reconstructed steady-state compo-
sition profiles are shown in Fig. 11. Despite inclusion of the
stage 1 composition previously considered to be a poor mea-
surement (see Table 4), EKF performance was only slightly
degraded as compared to the regular case in Fig. 7. These
simulation results demonstrate that the proposed measure-
ment selection procedure is sufficiently flexible for industrial
applications where existing measurements must be com-
bined with new measurements to achieve successful on-line
estimation.

A fundamental limitation of nonlinear wave models is ob-
served when the inflection point of the composition profile
moves far beyond a physical boundary of the column section.
The wave position s can assume a value significantly below
zero when the profile moves sharply downward and a value sig-
nificantly above unity when the profile moves sharply upward.
Such composition profiles are inherently difficult to reconstruct
with wave models because all candidate measurements provide
information only for a limited portion of the profile located in-
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Fig. 11. Reconstructed steady-state profiles when the overhead composition
is a preselected measurement.

side the physical section boundaries. To illustrate this problem
we considered a modified version of the benzene–toluene col-
umn with three additional theoretical stages added to both the
rectifying and stripping sections. This change produced a much
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Table 6
Measurement selection results for the modified benzene–toluene column with
six estimated parameters

Steady-states 1st 2nd 3rd 4th 5th 6th 7th 8th

Nominal 1 25 29 17 15 23 26 18
F − 10 kmol/h 1 29 21 16 17 6 26 3
F + 10 kmol/h 1 29 25 15 26 11 23 16
Averaged gain 1 25 27 18 15 9 26 23

higher purity separation with a benzene product composition
of 0.9997 and a bottoms product composition of 0.0065. Off-
line estimation studies showed that the wave slopes �r and �s

varied only slightly for ±10% feed flow rates changes. There-
fore, we fixed the wave slopes at their nominal values �r =6.21
and �s = 5.41 and treated the two wave positions (sr , ss) and
the four asymptotic limits (ymin,r , ymax,r , ymin,s , ymax,s) as es-
timated variables.

Table 6 shows the measurement rankings obtained with the
proposed algorithm for this new case. The first six measure-
ments for the average gain entry were used to generate EKF
estimates of the wave positions and asymptotic limit parame-
ters. Fig. 12 shows EKF performance for a 10% decrease in
the feed flow rate. While the measured compositions were ef-
fectively tracked, the wave position sr and upper asymptotic
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Fig. 12. Estimator performance for the modified benzene–toluene column with six estimated variables.

Table 7
Measurement selection results for the modified benzene–toluene column with
five estimated parameters

Steady-state 1st 2nd 3rd 4th 5th 6th 7th 8th

Nominal 1 25 29 17 15 23 26 18
F − 10 kmol/h 1 29 21 16 18 10 26 6
F + 10 kmol/h 1 29 25 15 27 23 16 11
Averaged gain 1 25 27 18 14 23 20 26

limit ymax,r in the rectifying section simultaneously diverged
due to an observability problem caused by the wave profile
moving out the top of the rectifying section. EKF divergence
was attributable to an inherent limitation of the wave model
rather than a shortcoming of the proposed measurement selec-
tion procedure. We were not able to find any combination of
on-line measurements that eliminated the divergence problem.

The only recourse was to formulate a different estimation
problem by selecting a new set of estimated parameters. We
fixed the diverging parameter ymax,r = 1 and estimated the
remaining three asymptotic limit parameters with the first five
measurements listed for the average gain entry in Table 7.
Fig. 13 shows the performance of the modified EKF for a 10%
decrease in the feed flow rate. Removal of the unobservable
parameter ymax,r produced stable estimator performance as well
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Fig. 13. Estimator performance for the modified benzene–toluene column with five estimated variables.
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Fig. 14. Reconstructed steady-state profiles for the modified benzene–toluene
column with five estimated variables.

as unbiased tracking of the measured compositions. The re-
constructed steady-state composition profiles shown in Fig. 14
were generally satisfactory with the possible exception of
the rectifying section predictions for the 10% feed flow rate
decrease.

6. Summary and conclusions

A general method for selecting candidate measurements for
on-line state and parameter estimation was presented. While
sharing similarities with existing techniques based on singu-
lar value decomposition, the proposed method offers several
important advantages including the ability to: (1) rank more
measurements than the number of estimated variables; and (2)
allow the inclusion of existing plant measurements. We focused
on the selection of stage composition measurements for on-line
estimation of nonlinear wave models that capture the essential
dynamics of high purity distillation columns. The measure-
ment selection procedure was successfully utilized to construct
combined state/parameter estimators for a nitrogen purification
column and a benzene–toluene separation column using the ex-
tended Kalman filtering approach. The ultra high purity nitro-
gen column required one more measurement than the number
of estimated variables to ensure stable EKF performance due
to the presence of highly pinched composition profiles. Excel-
lent EKF performance was obtained for the benzene–toluene
column when the product purity requirements were modest.
A modified benzene–toluene column designed to produce
higher purity products caused EKF divergence due to an in-
herent observability problem associated with wave models. A
heuristic redesign of the estimator was performed to eliminate
the observability problem and generate stable EKF estimates.
The simulation results presented suggest that the proposed
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method is sufficiently flexible to address a wide range of
practical measurement selection problems.
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