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Abstract

High purity distillation columns are critical unit operations in cryogenic air separation plants. The development of nonlinear control
technology is motivated by the need to frequently change production rates in response to time varying utility costs. Detailed column models
based on stage-by-stage balance equations are too complex to be incorporated directly into optimization-based strategies such as nonlinear
model predictive control. In this paper, we develop reduced order dynamic models for the upper column of a cryogenic air separation plant
by applying time scale arguments to a detailed stage-by-stage model that includes mass and energy balances and accounts for non-ideal
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apor–liquid equilibrium. The column is divided into compartments according to the locations of liquid distributors and feed and w
treams. The differential equations describing each compartment are placed in singularly perturbed form through the application of
ased coordinate transformation. Application of singular perturbation theory yields a differential–algebraic equation model with sig

ewer differential variables than the original stage-by-stage model. A rigorous column simulator constructed using Aspen Dynam
echnology) is used to access the tradeoff between reduced order model complexity and accuracy as the number of compartme
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Linear model predictive control (LMPC) is the most suc-
essful multivariable control technology in the chemical pro-
ess industries (Qin & Badgwell, 1997). The success of
MPC is largely attributable to its optimization formula-

ion that allows process constraints to be accommodated in
systematic fashion. The inherent assumption of linear pro-

ess dynamics restricts the application of LMPC to relatively
mall operating regimes. Nonlinear control technology is of-
en required for highly nonlinear processes that are subject
o large and/or frequent changes in operating conditions. A
rototypical example of this small but important class of non-

inear processes is continuous polymerization reactors used
o produce multiple polymer grades (Debling et al., 1994;
cAuley & MacGregor, 1992). While other controller design

trategies such as feedback linearization (Henson & Seborg,
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1997, chap. 4;Kravaris & Kantor, 1990) are available, non
linear model predictive control (NMPC) appears to be
most promising nonlinear control technology for indust
applications (Allgower & Zheng, 2000).

NMPC is an extension of LMPC in which a nonl
ear dynamic model is used to predict and optimize fu
process performance. NMPC controllers are commonly
plemented using a simultaneous solution strategy in w
the dynamic model equations are temporally discre
and posed as equality constraints in a nonlinear optim
tion problem (Henson, 1998; Meadows & Rawlings, 1997,
chap. 5). Future input and state variables are treated a
cision variables, thereby producing a potentially large n
linear programming problem that must be solved rep
edly in real time. Computational complexity is inextrica
linked to the nonlinear dynamic model used for contro
design. Commercial NMPC technology (Qin & Badgwell,
1998) is effectively restricted to low-order nonlinear mo
els such as those commonly developed for polymeriz
reactors.

098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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High purity distillation columns are an important class of
nonlinear processes that are not directly amenable to the ap-
plication of NMPC technology due to the high-order nature of
stage-by-stage balance models(Luyben, 1973). Two imple-
mentation strategies have been pursued: (1) the development
of sophisticated solution methods that allow direct incorpo-
ration of detailed column models and (2) the derivation of
reduced order controller design models from stage-by-stage
models to reduce the computational requirements. The first
approach exploits the large number of algebraic variables
typically present in differential–algebraic equation models
of distillation columns (Leineweber, 1998). A significant
fraction of NMPC computational overhead is attributable
to calculation of the Jacobian and Hessian matrices. The
NMPC optimization problem can be decomposed such that
matrix elements associated with the algebraic variables
can be excluded from these calculations. When combined
with other computational enhancements including multiple
shooting and reduced successive quadratic programming,
the decomposition strategy allows the application of NMPC
to stage-by-stage balance models of moderate complex-
ity (Kronseder, von Stryk, Bulirsch, & Kroner, 2001; Nagy
et al., 2000). However, the applicability of this approach is
ultimately limited by the complexity of the column model.

The derivation of reduced order column models from more
detailed stage-by-stage models has received considerable at-
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can be derived. Unfortunately, the simplifying assumptions
that underpin nonlinear wave theory are rarely satisfied in
practice. For example, wave models are incapable of ac-
counting for end effects and producing the self-sharpening
behavior of non-ideal columns. As a result wave models have
limited predictive capability.

Compartmental models are derived directly from stage-
by-stage balance models by dividing the column into a small
number of sections termed compartments (Benallou, Se-
borg, & Mellichamp, 1986; Horton, Bequette & Edgar, 1991;
Levine & Rouchon, 1991). A dynamic model of each com-
partment is developed by combining stage-by-stage balances
with overall balances over the entire compartment. If the
number of stages in the compartment is sufficiently large and
each stage has a comparable liquid holdup, then the overall
dynamics of the compartment are much slower than the dy-
namics of any individual stage within the compartment. This
time scale separation allows the compartment dynamics to be
approximated with the differential equations for a represen-
tative stage whose holdup is equal to the total compartment
holdup (Levine & Rouchon, 1991). The balance equations
for other stages within the compartment are reduced to alge-
braic equations due to their relatively fast dynamics. Advan-
tages of the compartmental modeling approach include: (1)
perfect steady-state agreement with the associated stage-by-
stage model is ensured; (2) a suitable tradeoff between model
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ention. While other methods are available, reduced o
odeling techniques based on collocation, wave theory

ompartmentalization are representative. Collocation m
ds involve the construction of a spatial mesh and the
ulation of dynamic balance equations at the colloca
oints (Levien, Stewart, & Morari, 1985; Yang & Lee, 1997).
reduced order model is obtained by choosing the num

f collocation points to be considerably less than the n
er of separation stages. Many studies are strictly foc
n steady-state collocation models used for distillation
mn design (Seferlis & Grievink, 2001; Seferlis & Hrymak
994a, 1994b; Swartz & Stewart, 1986). As compared t

he compartmentalization approach discussed below, c
ation techniques suffer from a number of limitations inc
ng (Carta, Tola, Servida, & Morbidelli, 1995a, 1995b; Yang

Lee, 1997): (1) the collocation points may not correspo
o actual separation stages; (2) state variables at other co
ocations must be determined by interpolation; (3) mode
uracy is limited by the number of collocation points; (4)
ccurate predictions can be obtained for columns with s
rofiles and/or discontinuities due to feed and withdra
treams.

The wave modeling approach is based on the pre
hat the column profile can be described by a moving w
ront with constant pattern (Kienle, 2000; Marquardt, 198;
arquardt & Amrhein, 1994). Under simplifying assump

ions including binary separation, ideal vapor–liquid e
ibrium, constant equimolar overflow and constant m
oldups, a single differential equation for the wave pos

hat allows the entire composition profile to be reconstru
omplexity and dynamic accuracy can be achieved by ad
ng the number of compartments; (3) the triangular struc
f the original stage-by-stage model is retained.

Compartmental models are comprised of relatively
ifferential equations representing the overall compartm
ynamics and a potentially large number of algeb
quations derived from the dynamic stage balances. N
imultaneous solution methods require that the alge
ariables be included as decision variables and tempo
iscretized versions of the algebraic equations be pos
quality constraints. Consequently the computational ad

age of reducing most of the differential equations to algeb
quations is not readily apparent. Recently, highly effic
MPC solution methods for sparse differential–algeb
quation (DAE) models have been developed (Leineweber
998) and applied to distillation columns (Kronseder et al
001; Nagy et al., 2000). Although beyond the scope of th
aper, we envision that compartmental models are id
uited for these solution methods due to the large numb
lgebraic variables and the sparseness of the Jacobian m

We are particularly interested in developing nonlin
odeling and control technology for cryogenic distillat

olumns in air separation plants. This research is motiv
y the need to frequently adjust production rates in resp

o time varying electricity costs caused by deregulation o
lectrical utility industry. Our previous work has focused

he derivation of reduced order nonlinear models using
inear wave theory (Zhu, Henson, & Megan, 2001) and com
artmentalization (Khowinij, Henson, Belanger, & Megan,
ress) as well as the development of a NMPC strategy b
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on the wave model (Bian, Henson, Belanger, & Megan, 2005)
for a nitrogen purification column. The purpose of this paper
is to evaluate reduced order compartmental models for the
upper column of a double column plant used to produce both
nitrogen and oxygen products. A longer term goal is to uti-
lize these compartmental models to design NMPC controllers
through the application of customized solution methods that
exploit the DAE model structure (Leineweber, 1998).

The remainder of the paper is organized as follows. In Sec-
tion2, our previous research on nitrogen purification columns
is briefly reviewed to provide context for the present work.
The development of an Aspen Dynamics simulator, a stage-
by-stage balance model and reduced order compartmental
models for the upper column is discussed in Section3. Sec-
tion4contains simulation results that demonstrate the relative
performance of the various models. Finally, a summary and
conclusions are presented in Section5.

2. Previous work on nitrogen purification columns

Our previous research on reduced order modeling of cryo-
genic air separation plants focused on the nitrogen purifica-
tion column shown inFig. 1. The column has 42 equilibrium
stages, a distributor located in the middle of the column to
improve liquid flow characteristics, a sump located at the
b ory
a tially
fl apor
s duce
t ,
2 uid
s n as
t col-
u
w logy)
a lation
s

ls of
t the-
o l
e om-
p res-
s wave
p to
b nges
s ential
d pen
c due
t tion
n large
d bility
t com-
b roach
t ave
m

Recently we have developed reduced order compartmental
models that provided a considerably more detailed descrip-
tion of the nitrogen purification column dynamics than was
possible with the wave modeling approach (Khowinij et al.,
in press). The stage-by-stage model used for compartmental
model derivation included ternary component balances and
liquid hydraulic relations. The condenser, liquid distributor
and feed stage were treated as single stage compartments
due to their relatively large liquid holdups. Two reduced or-
der models were formulated by dividing the column sections
above and below the distributor into two compartments (five
compartment model) or four compartments (seven compart-
ment model). For example, the stage-by-stage model con-
sisting of 130 differential equations was approximated by
the seven compartment model with 19 differential equations
and 111 algebraic equations. The two compartmental models
were dynamically simulated using the DAE solver available
in MATLAB. Each model produced close agreement with the
stage-by-stage model and satisfactory predictions as com-
pared to the considerably more detailed Aspen simulator. A
typical simulation time for the seven compartment model was
approximately 20% of that required for the stage-by-stage
model.

In this paper, compartmental models for the upper column
of the double column air separation plant shown inFig. 1
are developed and evaluated. This work is an essential step
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ottom of the column which holds a large liquid invent
nd an integrated condenser/reboiler in which the par
ashed bottom stream is vaporized and the nitrogen v
tream from the top of the column is condensed to pro
he reflux and liquid nitrogen product streams (Zhu et al.
001). The feed is introduced immediately above the liq
ump, and a portion of the overhead stream is withdraw
he gaseous nitrogen product. A dynamic simulator of the
mn and the integrated condenser/reboiler (Bian et al., 2005)
as developed using Aspen Dynamics (Aspen Techno
nd used as a surrogate for the nitrogen plant in our simu
tudies.

We have developed reduced order nonlinear mode
he nitrogen purification column using nonlinear wave
ry (Bian et al., 2005; Zhu et al., 2001). A single differentia
quation was used to track the position of the nitrogen c
osition wave front. When combined with a profile exp
ion that approximates the wave pattern, the predicted
osition allowed the entire nitrogen composition profile
e constructed. Simulation tests for production rate cha
howed that the nonlinear wave model captured the ess
ynamic behavior of the Aspen model. However, the As
omposition profiles exhibited self sharpening behavior
o nonlinear equilibrium relations as well as wave distor
ear the ends of the column. The wave model produced
ynamic and steady-state prediction errors due to its ina

o capture such non-ideal effects. We have shown that
ined state and parameter estimation is a feasible app

o improve the predictive capability of the nonlinear w
odel (Bian et al., 2005).
owards our long-term goal of developing nonlinear mode
nd control technology for double column and triple colu
ir separation plants. With respect to our previous rese
n nitrogen purification columns, novel aspects of the pre
ork include:

. Construction of an Aspen simulator of the upper colu
that accounts for the multiple feed and withdrawal stre
and liquid distributors located along the column.

. Development of a more accurate stage-by-stage mod
compartmental model derivation. Simplifying assum
tions including constant equimolar overflow and cons
relative volatility are relaxed by adding energy balan
and non-ideal vapor–liquid equilibrium relations.

. A more detailed investigation of different compartmen
ization strategies on reduced order model complexity
computational efficiency.

. Upper column modeling

A schematic representation of the upper column is sh
n Fig. 1. The column has 59 stages including the rebo
nd seven liquid distributors located throughout the col
stages 1, 10, 18, 26, 35, 43 and 51). The column receive
ir feed streams (liquid air on stage 18 and turbine air on
5) following compression and expansion that achieve
ryogenic temperatures necessary for separation. The
olumn is coupled to the lower column through the integr
ondenser/reboiler, the reflux stream on stage 1 obtained
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Fig. 1. Schematic diagram of a typical double column air separation plant.

the overhead of the lower column and kettle liquid feed ob-
tained from the bottom of the lower column. The nitrogen
product is withdrawn from stage 1 and a gaseous nitrogen
waste stream is withdrawn from stage 10. Because the focus
of this paper is upper column modeling, the lower column and
the compression, expansion and heat exchange equipment are
neglected. Therefore, the scope is limited to the upper column
with reboiler, and the various feed and withdrawal streams
are treated as independent inputs.

3.1. Aspen simulator

A detailed dynamic simulator of the upper column was
developed using Aspen Dynamics (Aspen Technology). The
Aspen column modelRadFrac was used to solve the dy-
namic component balances and steady-state energy balances
for each stage. Modeling of the lower column was avoided
by treating the integrated condenser/reboiler as a simple re-
boiler with a constant condenser side temperature. The ther-
modynamic models used were NRTL for the liquid phase
and Peng–Robinson for the vapor phase. Proprietary ther-
modynamic property data for the air components (nitrogen,

oxygen and argon) were provided by Praxair. PID controllers
were implemented for regulation of the reboiler level and the
overhead pressure. Equipment specifications and the steady-
state operating conditions listed inTable 1were obtained
from a typical Praxair double column air separation plant.
The Aspen simulator was used to represent the upper col-
umn in our modeling studies. To evaluate the compartmental
models over a reasonable range of operating conditions, two
other steady states corresponding to liquid air feed flow rate
changes of±25% from the nominal value were also investi-
gated. This feed stream was chosen for manipulation because
it represents the major source of air to the column and is in-
dependent of the unmodeled lower column. A more realistic
disturbance caused by a production rate change would require
an integrated model of the lower and upper columns that is
beyond the scope of this work.

3.2. Stage-by-stage balance model

A stage-by-stage balance model was derived to provide the
basis for compartmental model development. Model deriva-
tion was based on the following simplifying assumptions:
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Table 1
Nominal Operating Conditions of the Upper Column

Variable Symbol (Units) Value

N2 product flow rate PN2 (kmol/h) 330.99
N2 product impurity yO2,PN2

(ppm) 1.15
O2 product flow rate PO2 (kmol/h) 258.443
O2 product impurity yO2,PO2

(kmol/kmol) 0.9930
Average stage liquid holdup M̄L (kmol) 0.755
Average stage vapor holdup M̄V (kmol) 0.0970
Distributor liquid holdup M1 (kmol) 5.085
Distributor liquid holdup M10 (kmol) 10.151
Distributor liquid holdup M18 (kmol) 10.872
Distributor liquid holdup M26 (kmol) 11.708
Distributor liquid holdup M35 (kmol) 11.442
Distributor liquid holdup M43 (kmol) 12.438
Distributor liquid holdup M51 (kmol) 12.439
Reboiler liquid holdup M59 (kmol) 43.560

(1) negligible vapor phase holdups; (2) ideal vapor phase
behavior; (3) fast temperature dynamics; (4) linear pressure
profiles across the column; (5) complete mixing of the va-
por and liquid streams entering the feed stages; (6) constant
reboiler medium temperature. The stage-by-stage model is
comprised of dynamic component balances for oxygen and
argon, dynamic overall mass balances, steady-state energy
balances and an activity coefficient model to account for non-
ideal liquid phase behavior. The model equations for thei-th
separation stage are:

Mi
dO2, i

dt
= Li−1xO2,i−1 + Vi+1yO2,i+1 − LixO2,i − ViyO2,i − xO2,

Mi
dxAr, i

dt
= Li−1xAr,i−1 + Vi+1yAr,i+1 − LixAr,i − ViyAr, i − xAr,

dMi

dt
= Li−1 + Vi+1 − Li − Vi

0 = Li−1h
L
i−1 + Vi+1h

V
i+1 − Lih

L
i − Vih

V
i − hL

i
dMi

dt

1 = yO + yN + yAr

w
m
t
h pen
p de-
p por
e ure
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l te
w

L

w

The vapor–liquid equilibrium relation is written as:

yn,i = κiγn,iKn,ixn,i + (1 − κi)yn,i+1,

n = N2, O2, Ar (3)

where K is the ideal temperature dependent vapor–liquid
equilibrium constant,γ the activity coefficient andκ is the
Murphee stage efficiency. The ideal vapor–liquid equilibrium
constant was calculated as:

Kn,i = Psat
n (Ti)

Pi

(4)

where the Antoine equation was used to compute the pure
component saturation pressuresPsat

n . A linear increase of the
stage pressure from a constant overhead pressure (P1) was
assumed:

Pi = P1 + (i − 1)�P (5)

A constant individual stage pressure drop was correlated to
the reboiler vapor rate (Vr) using Aspen simulation data:

�P = βV 2
r (6)

whereβ is a constant. The activity coefficients were calcu-
lated using the Margules equation for multicomponent mix-
tures (Prausnitz, Lichtenthaler, & de Azevedo, 1986):

γN2,i = exp

γO2,i = exp

γAr,i = exp

w nt
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i -
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ed to
m
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hereM is the liquid holdup,L andV the liquid and vapor
olar flow rates, respectively,x andy component mole frac-

ions in the liquid and vapor phases, respectively, andhL and
V are liquid and vapor phase enthalpies, respectively. As
hysical property data were used to develop temperature
endent correlations for the pure component liquid and va
nthalpies. Stream enthalpies were calculated from the p
omponent enthalpies using linear mixing rules. A linear
ationship between liquid holdup and liquid molar flow ra
as regressed from Aspen simulation data:

i = kiMi (2)

herek is stage hydraulic coefficient.
i
dMi

dt

i
dMi

dt

(1)

[
AN2,O2x2

O2,i
+AN2,Arx

2
Ar,i+(AN2,O2+AN2,Ar−AO2,Ar)xO2,ixAr,i

RTi

]
[

AN2,O2x2
N2,i

+AO2,Arx
2
Ar,i+(AN2,O2+AO2,Ar−AN2,Ar)xN2,ixAr,i

RTi

]
[

AN2,Arx
2
N2,i

+AO2,Arx
2
O2,i

+(AN2,Ar+AO2,Ar−AN2,O2)xN2,ixO2,i

RTi

]
(7)

hereT is the absolute temperature,R the ideal gas consta
nd the Margules constant,Aj,k, accounts for liquid phas

nteractions between componentsj and k. Proprietary val
es of the Margules and Antoine constants were provide
raxair.
Steady-state mass and enthalpy balances were us

odel mixing of the four feed streams shown inFig. 2with
nternal vapor and liquid streams. Each liquid distributor

odeled as a separation stage with negligible vapor ho
nd a very small stage efficiency (5%). Modeling of
eboiler was simplified by assuming a constant conde
ide temperature as in the Aspen simulator. A PI contr
as designed to regulate the reboiler level by manipula
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of the oxygen product flow rate. The controller tuning pa-
rameters were identical to those used in the Aspen simula-
tor:kc = −5000 %level/(kmol/h) andτi = 2 s. The complete
stage-by-stage model consisted of 178 differential equations
and 134 algebraic equations with the following unknowns:
xO2,i, xAr,i, Li, Vi andTi. TheMATLAB codeode15s was
used to solve the DAE model.

3.3. Compartmental models

The compartmentalization approach was used to derive re-
duced order dynamic models from the stage-by-stage model

described above. To examine the effect of compartmental-
ization on reduced order model complexity and accuracy, the
following three cases shown inFig. 2were investigated:

• 15 Compartment model: The reboiler (stage 59) and the
seven distributors (stages 1, 10, 18, 26, 35, 43 and 51)
were treated as separate compartments due to their large
liquid holdups listed inTable 1. Equilibrium stages lo-
cated between adjacent distributors were lumped together
as multistage compartments.

• 9 Compartment model: Distributors located between feed
and/or withdrawal points were lumped together with equi-
Fig. 2. Three alternative compartmentalization schemes: (a
) 15 compartments; (b) 9 compartments; (c) 5 compartments.
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librium stages such that only a single compartment was
located between any two feed and/or product streams.

• 5Compartment model: Each compartment contained a sin-
gle feed and withdrawal stream located at the first stage of
the compartment. The reboiler was treated as a single stage
compartment due to its relatively large liquid holdup.

The compartmental models were derived by transform-
ing the stage-by-stage model into singularly perturbed form
and neglecting the fast dynamics (Levine & Rouchon, 1991).
Single stage compartments cannot be simplified because the
associated model equations do not exhibit a time scale sep-
aration. The model-order reduction procedure for multistage
compartments can be summarized as follows: (1) replace
the dynamic balances for a chosen equilibrium stage with
dynamic balances derived for the entire compartment; (2)
introduce a singular perturbation parameter that represents
the ratio of the liquid holdup of an individual equilibrium
stage to the liquid holdup of the entire compartment; (3) re-
duce the differential equations for the individual equilibrium
stages to algebraic equations by setting the singular pertur-
bation parameter to zero. As discussed earlier, we have ap-
plied this approach to a simpler nitrogen purification column
model (Khowinij et al., in press) under the assumptions of
equimolar overflow and ideal vapor–liquid equilibrium. Here
we outline the compartmental modeling procedure for the
u ner
b s. A
d
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investigate this issue further in the next section. By defining
Mi

Mc
= αiε whereαi ≈ 1 accounts for O(1) differences among

individual stage holdups andε � 1, the stage-by-stage model
equation can be placed in singularly perturbed form where
the average compartment variablesMc andxn,c are the slow
variables and the individual stage variables variablesMi and
xn,i are the fast variables (Levine & Rouchon, 1991). The fol-
lowing reduced order model equations are obtained by setting
ε = 0 according to singular perturbation theory (Kokotovic,
Khalil, & O’Reilly, 1999):

0 = L0xn,0 + V2yn,2 − L1xn,1 − V1yn,1

0 = L0 + V2 − L1 − V1

0 = L0h
L
0 + V2h

V
2 − L1h

L
1 − V1h

V
1

...

0 = Lk−2xn,k−2 + Vkyn,c − Lk−1xn,k−1 − Vk−1yn,k−1

0 = Lk−2 + Vk − Lk−1 − Vk−1

0 = Lk−2h
L
k−2 + Vkh

V
k − Lk−1h

L
k−1 − Vk−1h

V
k−1

Mc
dxn,c

dt
= L0xn,0 + Vm+1yn,m+1 − Lmxn,m − V1yn,1

−xn,c
dMc

dt
dMc

dt
= L0 + Vm+1 − Lm − V1

0 = L0h
L + Vm+1h

V − LmhL − V1h
V − hL dMc

m
us
for

del

if-
del.
cy
n.
pper column stage-by-stage model with steady-state e
alances and non-ideal vapor–liquid equilibrium relation
etailed derivation is omitted for the sake of brevity.

Consider the dynamic balances for a multistage com
ent comprised ofm equilibrium stages. Overall compone
alances about the compartment yield:

dMcxn, c

dt
= L0xn,0 + Vm+1yn, m+1 − Lmxn,m − V1yn,1

dMc

dt
= L0 + Vm+1 − Lm − V1

hL
c

dMc

dt
= L0h

L
0 + Vm+1h

V
m+1 − LmhL

m − V1h
V
1

(8)

here the subscriptn denotes oxygen or argon, and the s
cripts 0 andm + 1 are used to represent liquid proper
rom the stage immediately above the compartment an
or properties from the stage immediately below the c
artment, respectively. The total liquid holdup, holdup a
ged compositions and holdup averaged liquid enthalp

he compartment are defined as:

c =
m∑

i=1

Mi, xn,c =
∑m

i=1 Mixn,i

dMc

,

L
c =

∑m
i=1 Mih

L
i

dMc

(9)

time scale separation is introduced by replacing the
amic balances for thek-th stage in the compartment w

he overall balances(8). Although previous studies have su
ested that the location of this so-called “sensitive stage”
ot have a significant effect on reduced order model a
acy (Khowinij et al., in press; Levine & Rouchon, 1991), we
gy
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0 m+1 m 1 c dt

0 = Lkxn,c + Vk+2yn,k+2 − Lk+1xn,k+1 − Vk+1yn,k+1

0 = Lk + Vk+2 − Lk+1 − Vk+1

0 = Lkh
L
c + Vk+2h

V
k+2 − Lk+1h

L
k+1 − Vk+1h

V
k+1

...

0 = Lm−1xn,m−1 + Vm+1yn,m+1 − Lmxn,m − Vmyn,m

0 = Lm−1 + Vm+1 − Lm − Vm

0 = Lm−1h
L
m−1 + Vm+1h

V
m+1 − LmhL

m − VmhV
m

(10)

The 15 compartment model shown inFig. 2a is completed
by adding the balance equations and vapor–liquid equilibriu
relations for the single stage compartments. An analogo
procedure is used to derive the reduced order equations
the 9 compartment and 5 compartment models shown inFig.
2b and c, respectively. The resulting reduced order mo
equations are not reported here.Table 2shows that compart-
mentalization produces a large reduction in the number of d
ferential variables as compared to the stage-by-stage mo
The effect of model-order reduction on prediction accura
and computational efficiency is explored in the next sectio

Table 2
Complexity of the stage-by-stage and compartmental models

Model Differential variables Algebraic variables

Stage-by-stage 178 134
15 Compartment 46 266
9 Compartment 28 284
5 Compartment 16 296
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4. Results and discussion

The first set of simulation results were generated by: (1)
selecting the sensitive stage of each multistage compartment
to be located in the center of the compartment and (2) adjust-
ing stage efficiencies in the top section (stages 2–9) and the
reboiler heat transfer coefficient of the stage-by-stage balance
model such that the nitrogen and oxygen product purities of
the Aspen model at the nominal steady state were matched.
Fig. 3provides a comparison of steady-state oxygen and ar-
gon composition profiles obtained from the Aspen simulator,
the full-order stage-by-stage model (FOM) and reduced order
models with 15, 9 and 5 compartments (Comp15, Comp9 and
Comp5) at the nominal steady state. The composition pro-
files are plotted in physical coordinates and natural log trans-
formed coordinates to facilitate comparison of the various
models. The stage-by-stage model provides good agreement
with the Aspen simulator over a very wide range of compo-
sitions. Although not illustrated here, the inclusion of energy
balances and non-ideal vapor–liquid equilibrium relations in
the stage-by-stage model was necessary to achieve satisfac-
tory results. Sharp discontinuities occur at the stages where
a feed stream is introduced, while relatively flat composition
profiles are observed at the locations of the liquid distribu-
tors. As predicted by singular perturbation theory (Levine &
Rouchon, 1991), each compartmental model provides perfect

steady-state agreement with the stage-by-stage model. Any
further improvements in the compartmental models would re-
quire the derivation of a more accurate stage-by-stage model.

The motivation for including more compartments in the
reduced order model is to improve dynamic prediction accu-
racy.Fig. 4 shows the evolution of the nitrogen and oxygen
product compositions for a 25% decrease in liquid air flow
rate att = 1 h. The stage-by-stage model yields a steady-state
gain for the nitrogen product composition that is about 65%
larger than the value produced by Aspen. By contrast, the
steady-state gain for the oxygen product composition is pre-
dicted very accurately. Good dynamic agreement between the
Aspen simulator and the stage-by-stage model responses is
obtained for this step change. The reduced order models yield
slower nitrogen composition responses than the stage-by-
stage model, while very good agreement is obtained for the
oxygen product purity except for the 5 compartment model.

The evolution of the oxygen and argon composition pro-
files for the−25% change in the liquid air flow rate is shown
in Fig. 5. The profiles obtained from the Aspen simulator
and the 15 compartment model are plotted at three time in-
stants. While the compartmental model is able to track the
two product compositions (seeFig. 4), the transient com-
position profiles are predicted less accurately. Large devia-
tions between the Aspen and compartmental profiles are ob-
served at the initial steady state (t = 1 h) and immediately af-

F
f

ig. 3. Steady-state oxygen and argon composition profiles for the nominal o
ull-order stage-by-stage model; Comp15, 15 compartment model; Comp9,
perating point. The various models are denoted as: Aspen, Aspen simulator; FOM,
9 compartment model; Comp5, 5 compartment model.
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Fig. 4. Dynamic nitrogen and oxygen product composition responses for a−25% change in the liquid air feed flow rate att = 1 h.

Fig. 5. Dynamic oxygen and argon composition profiles for a−25% change in the liquid air feed flow rate att = 1 h.
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Fig. 6. Dynamic nitrogen and oxygen product composition responses for a+25% change in the liquid air feed flow rate att = 1 h.

ter the step change (t = 1.1 h) in the upper portion of the col-
umn. By contrast the compartmental model yields very accu-
rate predictions of the final steady-state composition profiles
(t = 5 h).

Fig. 6 shows the dynamic responses of the nitrogen and
oxygen products for a+25% change in the liquid air feed
stream att = 1 h. The stage-by-stage model generates very
accurate predictions of the Aspen nitrogen product purity
dynamics and steady-state gain. Although the stage-by-stage
model produces a slightly larger steady-state gain than the
Aspen simulator for the oxygen product composition, the un-
dershooting dynamics caused by the reboiler level controller
are faithfully captured. The 15 compartment model provides
the best agreement with the stage-by-stage model for both
product compositions. The 9 compartment model produces
larger errors in the oxygen product purity dynamics, while
the 5 compartment model exhibits large deviations for both
compositions responses due to the lumping of equilibrium
stages and liquid distributors into the same compartments.
These results suggest that 15 compartments are needed to
accurately track the product composition dynamics of the
stage-by-stage model.

Oxygen and argon composition profile dynamics pro-
duced by the Aspen simulator and the 15 compartment model
for the +25% change in liquid air flow rate are shown in
Fig. 7. Despite generating satisfactory predictions of the
p -

mental model exhibits large errors in the composition profile
dynamics. Particularly large deviations are observed imme-
diately after the step change (t = 1.1 h) and at the final steady
state (t = 5 h). These results are partially attributable to the
adjustment of the stage-by-stage model to reproduce the As-
pen product compositions at the initial steady state. In effect,
the stage-by-stage model has been tuned to predict the prod-
uct compositions at the expense of the composition profiles.

The previous simulation results were generated by select-
ing the sensitive stage of each multistage compartment to be
located in the center of the compartment.Fig. 8 shows the
effect of the sensitive stage locations on product composition
responses obtained with 15 compartments for a+25% change
in the liquid air feed flow rate att = 1 h. The most accurate
predictions of Aspen composition dynamics are produced
when the sensitive stages are located in the center of the com-
partments as in the previous simulation tests. However, very
similar predictions are obtained when the sensitive stages
are located in either the top or bottom of the compartments.
The main advantages of center placement are less inverse re-
sponse (see insets) and more accurate dynamic tracking of
the oxygen product purity response. These results support
the claim that the locations of the sensitive stages have little
effect on reduced order model accuracy (Khowinij et al., in
press; Levine & Rouchon, 1991).

The final set of simulation results were generated with-
o e As-
roduct composition responses (seeFig. 6), the compart
 ut adjusting the stage-by-stage model to reproduce th
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Fig. 7. Dynamic oxygen and argon composition profiles for a+25% change in the liquid air feed flow rate att = 1 h.

pen product compositions at the initial steady state.Fig. 9
shows nitrogen and oxygen product composition responses
for a+25% change in the liquid air feed flow rate att = 1 h
when the sensitive stage of each multistage compartment is

located in the center of the compartment. As compared to the
case where the stage-by-stage model was fine tuned to fit the
initial Aspen product compositions (seeFig. 6), the stage-by-
stage model produces a much smaller steady-state gain for

F d oxyg e
i

ig. 8. The effect of sensitive stage locations on dynamic nitrogen an

n the liquid air feed flow rate att = 1 h.
en product composition responses of 15 compartment models for a+25% chang
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Fig. 9. Dynamic nitrogen and oxygen product composition responses for a+25% change in the liquid air feed flow rate att = 1 h without matching the initial
steady-state product compositions of the Aspen and full-order models.

Fig. 10. Dynamic oxygen and argon composition profiles for a+25% change in the liquid air feed flow rate att = 1 h without matching the initial steady-state
p
roduct compositions of the Aspen and full-order models.
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the nitrogen product purity but a more accurate steady-state
gain for the oxygen product purity using the Aspen model
as the basis for comparison. A comparison of the nitrogen
and oxygen composition profiles inFigs. 7(adjusted model)
and10 (unadjusted model) generated with 15 compartments
shows that more accurate prediction of Aspen composition
profiles is obtained with the unadjusted model. This result
provides further support for the claim that the adjusted model
has been tuned to reproduce Aspen product compositions at
the expense of poor composition profile predictions.

As shown inTable 2, the compartmental modeling strategy
allows a large reduction in the number of differential variables
as compared to the stage-by-stage model. In our previous
work on nitrogen purification columns, we observed that a
seven compartment model produced a five-fold decrease in
simulation time as compared to the stage-by-stage model
from which it was derived (Khowinij et al., in press). For
the upper column studied in this paper, we found that com-
partmental models produced roughly the same computation
times as the stage-by-stage model regardless of the number
of compartments used. We believe that these seemingly
incongruous results are attributable to the more complex al-
gebraic equations present in the upper column compartment
models combined with the inefficiency of theMATLAB DAE
solver. Although not investigated here, we conjecture that the
computational efficiency of the compartmental models rela-
t sing
a ,
C st
t ected
t me
w mple
a f con-
s m.
T nal
s . As
d ge of
t lting
D PC
c that
e

5

from
a urity
d The
s nces,
s e rela
t rous
A uced
o ere
d ugh
t rder
r with

relatively few differential variables but a large number of
algebraic variables. The compartmental models were shown
to yield good steady-state and dynamic agreement with the
stage-by-stage model as long as a sufficiently large number
of compartments were used. The compartmental models did
not produce a significant decrease in open-loop simulation
time despite the large reduction in the number of differential
variables. We conjecture that improved compartmental
model performance relative to the stage-by-stage model can
be achieved with a more advanced differential–algebraic
equation (DAE) solver than those currently available in Mat-
lab. More importantly, the order reduction method produces
sparse DAE models that can be exploited in simultaneous
solution methods developed for nonlinear model predictive
control. This direction is the focus of our future research.
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