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Direct Adaptive Control of Partially Known Nonlinear Systems
Richard B. McLain, Michael A. Henson, and Martin Pottmann

Abstract—A direct adaptive control strategy for a class of
single-input/single-output nonlinear systems is presented. The
major advantage of the proposed method is that a detailed
dynamic nonlinear model is not required for controller design.
The only information required about the plant is measurements
of the state variables, the relative degree, and the sign of a
Lie derivative which appears in the associated input–output
linearizing control law. Unknown controller functions are ap-
proximated using locally supported radial basis functions that
are introduced only in regions of the state space where the closed-
loop system actually evolves. Lyapunov stability analysis is used
to derive parameter update laws which ensure (under certain
assumptions) the state vector remains bounded and the plant
output asymptotically tracks the output of a linear reference
model. The technique is successfully applied to a nonlinear
biochemical reactor model.

Index Terms—Bioreactor control, direct adaptive control, Lya-
punov stability, radial basis functions.

I. INTRODUCTION

M OST advanced control strategies require a suitable
dynamic model of the system to be controlled. It is

interesting to note that some biological control systems are
believed to operate without the use of explicit models [2], [11],
[15]. Meanwhile, biological systems provide high performance
control of considerably more complex nonlinear systems than
those encountered in technological applications [4], [10], [19].
This suggests the modeling step may be eliminated entirely if
a satisfactory method for direct construction of the nonlinear
controller is available [6]. For linear systems, model reference
adaptive control provides such a framework [17].

Several difficulties are encountered when attempting to
develop direct adaptive controllers for nonlinear systems.
Determination of a suitable controller structure is the first
consideration [14]. Lightbody and Irwin [9] include a linear,
fixed-gain controller in parallel with a nonlinear adaptive
controller. Sanner and Slotine [16] use a derivative of the
desired trajectory combined with a proportional-derivative
control component which consists of a linear combination of
tracking error state variables and an adaptive term to recover
the unknown controller functions. In this paper, the nonlin-
ear control law is generated by approximating on-line the
unknown functions of the associated input–output linearizing
control law [7]. Derivation of stable parameter update laws is
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another challenging problem. We utilize Lyapunov theory to
derive stable update laws [8].

II. CLASS OF NONLINEAR SYSTEMS

The unknown nonlinear system is assumed to have the
general form,

(1)

where is an -dimensional vector of measured state vari-
ables, and and are scalar manipulated input and controlled
output variables, respectively. The associated input–output
linearizing control law is [5], [7],

(2)

where is the setpoint, is the relative degree, are
adjustable tuning parameters, and are
Lie derivatives, and and represent the “true”
controller functions. This control law yields the closed-loop
dynamics

(3)

which can be made stable by suitable choice of the.
Additional assumptions are required to ensure internal stability
of the closed-loop system due to the presence of an -
dimensional nonlinear system called the “zero dynamics.”
A sufficient condition for bounded tracking is that these
dynamics are exponentially stable and Lipschitz continuous
[18].

We consider the problem where the nonlinear system (1)
only is partially known, and the input–output linearizing
control law cannot be synthesized directly. The objective
is to construct on-line estimates of the unknown controller
functions and . For systems of relative degree
one, the function often is known from basic
conservation relations. As an example, consider a continuous
biochemical reactor described by the equations [1]

(4)

where and are the biomass and substrate concentrations,
respectively, is the dilution rate, is the feed substrate
concentration, and and are unknown func-
tions associated with the reaction kinetics. If and are
chosen as the manipulated input and the controlled output,
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respectively, then the system has relative degree one and the
function is known regardless of the form of
the reaction kinetics. As shown in Section III, we are able to
construct the nonlinear controller by knowing just the sign of

.

III. D IRECT ADAPTIVE CONTROL

A. Radial Basis Function Network

The unknown controller functions and are
approximated as

(5)

where and are vectors of time-varying controller parame-
ters, is a vector of basis functions, and is the number
of basis functions employed. The resulting control law has the
form

(6)

A wide variety of basis functions have been proposed for
multivariate function approximation [3]. We utilize a locally
supported radial basis function of the form [13]

elsewhere

(7)
where is the basis function center and are scaling
parameters. As compared to radial basis functions such as the
Gaussian [16], the locally supported basis function (7) offers
several potential advantages including 1) on-line adaptation is
simplified because only a subset of the controller parameters
have to be updated at any particular time and 2) knowledge
about previous operating regimes can be retained because
adaptation only affects the controller locally.

B. Relative Degree One Systems

The objective is to recursively update the controller parame-
ters such that the plant output asymptotically tracks the output
of a linear reference model. The following reference model is
suitable for nonlinear systems of relative degree one:

(8)

where is the model output and is a controller
tuning parameter. Two assumptions are invoked to facilitate
Lyapunov design of the parameter update laws. The first
assumption that ensures the nonlinear control
law (6) remains well defined. Because the sign of is
assumed to be known, this condition usually can be satisfied
by careful initialization of the controller parameters. The

second assumption ensures the existence of “true” controller
parameters and such that model matching is achieved

(9)

This implies that perfect estimation of the controller functions
throughout the entire state space is possible. This assumption
does not strictly hold in practice, although results for globally
supported radial basis functions suggest the controller func-
tions can be approximated arbitrarily well on a compact set if
a sufficient number of basis functions are employed [12].

Using (9), the derivative of the output along the system
trajectories can be written as

(10)

Assuming , substitution of the control law (6)
yields

(11)

where and are parameter error
vectors. The dynamics of the tracking error can
be written as

(12)

The form of the error dynamics suggests the following param-
eter update laws [17]:

(13)

where are adjustable adaptation gains.
Closed-loop stability is analyzed using the Lyapunov func-

tion

(14)

The derivative of along trajectories of the error system
is: . This establishes that , and
are bounded, and is square integrable [8]. The exponential
stability and Lipschitz continuity assumptions imposed on
the zero dynamics ensure is bounded and is uniformly
continuous [18]. It follows from Barbalat’s Lemma [8] that

.

C. Higher Relative Degree Systems

We now extend the direct adaptive control technique to
nonlinear systems of relative degree two and higher. The
appropriate reference model is

(15)

where the are controller tuning parameters chosen such that
is a Hurwitz polynomial. We assume

and the existence of “true” controller parameters
and that achieve model matching

(16)
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Following the previous development, the dynamics of the
tracking error can be written as

(17)

The gradient update laws (13) do not ensure Lyapunov
stability because the transfer function

(18)

associated with the error dynamics is not strictly positive real
[17]. This difficulty is overcome using the augmented error
approach [18]. Define the parameter errorand the regressor

as

(19)

Now the error dynamics can be written as ,
which represents the filtering of the time domain signal
by the stable transfer function . The “true” and estimated
values of the controller parameters are defined as

(20)

The augmented error is defined as [18]

(21)

This relation allows to be computed from measurable
signals. In general, because the estimated parameters
vary with time. By contrast, the “true” parameters are constant
so . By subtracting this
equation from (21), an alternative representation ofwhich
is more convenient for analysis is obtained

(22)

The form of this error equation suggests the following nor-
malized gradient update law [17]:

(23)

where is the filtered regressor. Closed-loop
stability can be analyzed using the procedure presented by
Sastry and Isidori [18].

D. Comparison with Linear Model Reference Adaptive Control

Linear model reference adaptive control (LMRAC) tech-
niques are based on a set of standard assumptions which ensure
closed-loop stability [17]. We show the proposed nonlinear
model reference adaptive control (NMRAC) strategy requires
analogous, but generally stronger, assumptions. LMRAC tech-
niques require a minimum phase transfer function model in
which the sign of the high-frequency gain is known. The
NMRAC strategy is restricted to nonlinear systems which
are minimum phase in the sense discussed in Section II.
In the Appendix, we show the assumption that the sign of

is known is a nonlinear generalization of the high-
frequency gain condition. The definition of the reference model
in LMRAC techniques requires knowledge of the system

TABLE I
NOMINAL OPERATING CONDITIONS

order and the relative degree . The relative degree
also must be known in the NMRAC strategy to define the
reference model. Knowledge of the system order is replaced
by the stronger assumption that all state variables are
measurable. Both techniques require the existence of nominal
controller parameters which achieve exact model matching. As
discussed previously, this assumption is considerably stronger
in the nonlinear case since unknown nonlinear functions are
approximated by linearly parameterized basis functions.

E. Radial Basis Function Generation

The previous development is based on the assumption
that the number of radial basis functions is fixed. To
reduce computational demands, only basis functions which are
centered “near” the closed-loop trajectories should be utilized.
We address this problem by using a modification of center
generation procedures proposed in [13] and [16]. Potential
locations for basis function centers are placed on a regular
grid in the state space. A particular basis function is activated
only if the closed-loop system evolves “near” its center. In the
two-dimensional example considered in the next section, the
four basis functions surrounding the current operating point are
activated if they are not presently contained in the network.
We have found this scheme provides a reasonable compromise
between the number of basis functions and the smoothness of
the control moves.

IV. SIMULATION EXAMPLE

We apply the direct adaptive control strategy to the bioreac-
tor model (4) where the reaction rate functions have the form
[1]

(24)

Nominal operating conditions are shown in Table I. The ma-
nipulated input and controlled output are chosen as the dilution
rate and the biomass concentration , respectively. The
system has relative degree one and the unknown input–output
linearizing control law is

(25)

where the state vector is defined as . The
associated zero dynamics can be shown to be locally stable
via Jacobian linearization.
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Fig. 1. Repeated setpoint change.

Fig. 2. On-line function approximation for repeated setpoint change.

As discussed in Section II, it is reasonable to assume
the function is known and the function is
unknown. Therefore, the nonlinear control law has the form
(6) where . Radial basis functions are used to

construct an on-line estimate of using the procedure
described in Section III-E. The mesh size for centers is 0.05
g/L and 0.1 g/L for and , respectively, and the basis
functions are scaled with g/L and
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Fig. 3. Random setpoint changes.

Fig. 4. On-line function approximation for random setpoint changes.

g/L. The controller parameters of the four basis functions
surrounding the nominal operating point are initialized such
that is equal to the nominal value in Table I. The
remaining controller parameters are initialized to zero
when the corresponding basis functions are introduced to the
network. The desired setpoint response is described by the
reference model (8) with h . The parameter
update law is (13) where (the update law is not
needed).

Fig. 1 shows the servo performance for repeated setpoint
changes between the nominal biomass concentration (7.64 g/L)
and a lower value (7.14 g/L). A total of 47 basis functions
are activated for this test. The adaptive nonlinear controller
provides such outstanding tracking that it is difficult to distin-
guish between the outputs of the plant and the reference model.
The controller produces reasonable dilution rate changes, and
the control moves become slightly smoother as training pro-
gresses. Three randomly chosen controller parameters shown
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Fig. 5. Repeated disturbance.

for a longer test run appear to be converging. These correspond
to , and located in the two dimensional
state space at [7.65, 0.80] [7.55, 1.2] , and [7.15, 2.2] ,
respectively. Fig. 2 shows the on-line approximation of the
true controller function by the estimated function .
After the initial training phase the function is approximated
very accurately, with the exception of “spikes” which appear
in the approximated function for positive setpoint changes.

Fig. 3 shows the servo performance for setpoint changes of
random magnitude and duration. A total of 53 basis functions
are activated. As before, it is difficult to distinguish between
the outputs of the plant and the reference model. Reasonably
smooth dilution rate changes are produced even though the
input changes 40% from its nominal value. Fig. 4 shows
the controller function approximation for this case. With
the exception of a few “spikes” in the estimated function,
outstanding approximation is obtained.

Fig. 5 shows the regulatory performance for repeated feed
substrate concentration disturbances between the nominal
value (20 g/L) and a larger value (22 g/L). A total of
46 basis functions are activated. The controller provides
excellent disturbance rejection as the biomass concentration
is maintained within 0.02 g/L of the setpoint. The input is
well behaved and becomes slightly smoother with continued
training. Fig. 6 shows the regulatory performance for random
feed substrate concentration disturbances. A total of 22 basis
functions are activated. The controller provides excellent
disturbance rejection as before.

V. SUMMARY AND CONCLUSIONS

We have proposed a nonlinear adaptive control strategy
which does not require a detailed dynamic model of the
process to be controlled. The technique is applicable to single-
input, single-output nonlinear systems with full-state feedback
and stable zero dynamics. The only structural information
required is the relative degree and the sign of the Lie derivative

which appears in the associated input–output
linearizing control law. Unknown controller functions are
approximated with locally supported radial basis functions that
are linearly parameterized. Basis functions are introduced only
in regions of the state space where the closed-loop system
actually evolves. Parameter update laws which ensure (under
certain assumptions) the plant output asymptotically tracks
the output of a linear reference model and the state vector
remains bounded are derived via Lyapunov stability analysis.
The strategy provides good servo and regulatory performance
when applied to a two-dimensional biochemical reactor model.

APPENDIX

We show the assumption that the sign of is known is
a nonlinear generalization of the high-frequency gain condi-
tion in linear model reference adaptive control schemes. The
transfer function for a linear system of orderand relative
degree can be written as

(26)
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Fig. 6. Random disturbances.

where is the high-frequency gain. A minimal state-space
realization is

(27)

where the matrix , and are defined in [7]. Using these
matrices, it is easy to show that

(28)

where . It follows from [7] that
for a linear state-space system in the form (27). In this
sense, is the nonlinear generalization of the high-
frequency gain .
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