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A controller design strategy for nonlinear systems with more manipulated inputs than controlled
outputs is proposed. The technique is called “habituating control” as a result of its similarity to
control schemes commonly used in biological systems. Nonlinear control laws that provide input-
output linearization while simultaneously minimizing the “cost” of affecting control are derived.
In the single-output case, the cost function employed differs according to the relative degrees of
the two inputs. Local stability analysis shows that the resulting controller can provide a simple
solution to the singularity and nonminimum phase problems. An extension of the controller
design strategy for multiple-output processes also is presented. The proposed method is
evaluated using nonlinear models of chemical and biochemical reaction systems.

1. Introduction
Feedback control systems typically employ equal

numbers of manipulated inputs and controlled outputs.
In many applications, superior performance and robust-
ness can be achieved by introducing additional input
or output variables. A well-established example of this
approach is cascade control, where a second output
measurement allows improved disturbance rejection
using the existing manipulated input. Also widely
studied is the introduction of additional input variables
to form a nonsquare system with more inputs than
outputs. A variety of linear controller design techniques
have been proposed for both the single-output (Henson
et al., 1995; Popiel et al., 1986; Shinskey, 1978) and
multiple-output (Medanic, 1993; Muske and Rawlings,
1993; Siljak, 1980) cases.
Significantly fewer results are available for nonlinear

systems with more inputs than outputs. The design of
input-output linearizing controllers for nonminimum
phase nonlinear systems with a single output and two
inputs has been investigated (Doyle et al., 1992; Mc-
Clamroch and Schumacher, 1993). The first input is
used to achieve input-output linearization, while the
second input is used to stabilize the otherwise unstable
zero dynamics. Nonlinear model predictive control
(Bequette, 1991; Rawlings et al., 1994) provides a
systematic means for handling nonsquare nonlinear
systems with multiple outputs. However, this method
has several disadvantages including large computa-
tional requirements.
In this paper, we propose an input-output linearizing

control strategy for nonsquare nonlinear processes with
more manipulated inputs than controlled outputs. The
underlying premise is that the control objectives can be
satisfied more easily by utilizing additional input vari-
ables. Because the additional inputs provide extra
degrees of freedom, the nonlinear controller is designed
to provide input-output linearization at the minimum
cost. As explained below, the technique is called “ha-
bituating control” due to its similarity to control schemes
utilized in biological systems.
The remainder of the paper is organized as follows.

The biological motivation for the habituating control

strategy is discussed in section 2. Section 3 contains a
detailed presentation of the nonlinear controller design
technique for the single-output case. An extension for
multiple-output processes is presented in section 4. The
proposed method is evaluated via two simulation ex-
amples in section 5. Finally, section 6 contains a
summary and conclusions.

2. Biological Motivation

The baroreceptor reflex (baroreflex) is responsible for
short-term regulation of arterial blood pressure (Kirch-
heim, 1976; Sagawa, 1983). Blood pressure measure-
ments are provided by baroreceptor neurons located
within the arterial walls. The pressure measurements
are integrated with other cardiorespiratory signals in
the lower brain stem. The integrated sensory informa-
tion is processed by two distinct neural controllers, the
parasympathetic and sympathetic nervous systems.
These controllers maintain blood pressure at the desired
value by manipulating cardiac output and vascular
resistance. The parasympathetic system affects only
cardiac output, while the sympathetic system primarily
affects vascular resistance. As a result, the effect of the
parasympathetic system on arterial pressure is quite
rapid as compared to that of the sympathetic system.
However, sustained variations in cardiac output are
physiologically “expensive” as compared to long-term
variations in peripheral resistance. Therefore, the
parasympathetic system is used preferentially during
transient conditions, while the sympathetic system is
primarily responsible for steady-state control.
In conjunction with collaborators from DuPont, the

third author has developed linear habituating control
strategies by “reverse engineering” this biological control
system (Henson et al., 1995). The technique is ap-
plicable to linear systems with a single controlled output
and two manipulated inputs which differ in terms of
their relative costs and dynamic effects. The primary
input, which is analogous to the vascular resistance, is
used mainly for steady-state control. The secondary
input is analogous to the cardiac output; it is used only
during transients under normal operating conditions.
Controller design techniques based on direct synthesis
and model predictive control have been developed.
Simulation results demonstrate the superior perfor-
mance that can be achieved with habituating control
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as compared to conventional techniques that utilize a
single manipulated input. In this paper, we propose a
habituating control strategy for processes described by
nonlinear process models.

3. Single-Output Processes

Initially we consider the following class of nonlinear
systems,

where x is an n-dimensional vector of state variables,
u1 and u2 are scalar manipulated input variables, and
y is a scalar output variable. We assume that the state
vector is measured or estimated from available mea-
surements. The objective is to design nonlinear feed-
back control laws for u1 and u2 such that input-output
linearization is achieved. The following notation (Hen-
son and Seborg, 1991; Isidori, 1989; Kravaris and
Kantor, 1990) is useful. The Lie derivative of the scalar
field h(x) with respect to the vector field f(x) is defined
as:

Higher-order Lie derivatives are defined recursively:

The ith input ui has relative degree ri at the point x0 if
ri is the smallest integer such that LgiLf

ri-1h(x0) * 0.
Utilizing both inputs to achieve input-output linear-

ization offers several potential advantages as compared
to the standard approach of using a single input. As
discussed below, singular points (Henson and Seborg,
1992; Hirschorn and Davis, 1987) and unstable zero
dynamics (Doyle et al., 1996; Hauser et al., 1992a) may
preclude exact linearization using the primary input u1.
We show that it may be possible to overcome such
obstructions by introducing a secondary input u2. It is
important to note that the linearization objective does
not yield unique control laws; an additional objective
must be specified to obtain a well-defined control
problem. We design the control laws to minimize a
performance index which corresponds to the cost of
affecting control. The index differs according to the
relative degrees of the two inputs.
3.1. Equal Relative Degrees. First we assume that

the two inputs have equal relative degrees: r1 ) r2 ≡ r.
In this case, the rth derivative of the output can be
represented as:

Without loss of generality, we use the first input u1 to
achieve input-output linearization:

Under this control law, the closed-loop system has a
linear input-output map: y(r) ) v. Consequently, the

new input v can be designed to place the closed-loop
poles and to provide integral action for offset-free
tracking,

where ysp is the setpoint and Ri are controller tuning
parameters chosen such that the characteristic polyno-
mial sr+1 + Rrsr + ... + R1s + R0 is Hurwitz.
Note that the input-output linearizing control law

(5) is a function of the second input u2. The objective is
to design the control law for u2 such that the cost
associated with affecting control is minimized. It is
important to note that this approach is more general,
and more biologically plausible (Schmidt et al., 1971),
than linear controller design techniques (Henson et al.,
1995; Popiel et al., 1986; Shinskey, 1978) in which the
more “expensive” input is returned to its resting value
at steady state. We propose the following cost function:

where uj i and γi are the desired steady-state value and
the “cost” of input ui, respectively. Note that the cost
function penalizes instantaneous deviations of the in-
puts from their steady-state values. Minimizing I with
respect to u2 yields

where

Solving (5) and (8) for u2 yields the following state
feedback control law:

where R ) γ1
2/γ2

2. In practice, R may be employed as a
tuning parameter that determines the relative contribu-
tions of the two inputs. By substituting (10) into (5),
the following control law for u1 is obtained:

It is insightful to examine the control laws (10) and
(11) for limiting values of the tuning parameter R. In
the limit as R f 0, u2 ) uj2 and the control law for u1
becomes:

x̆ ) f(x) + g1(x) u1 + g2(x) u2 (1)

y ) h(x)

Lfh(x) ≡ [∂h(x)∂x ]Tf(x) (2)

Lf
kh(x) ≡ [∂Lf

k-1h(x)
∂x ]Tf(x) (3)

y(r) ) Lf
rh(x) + Lg1

Lf
r-1h(x) u1 + Lg2

Lf
r-1h(x) u2 (4)

u1 )
v - Lf

rh(x) - Lg2
Lf
r-1h(x) u2

Lg1
Lf
r-1h(x)

(5)

v ) -RrLf
r-1h(x) - ... - R2Lfh(x) + R1[ysp - h(x)] +

R0∫0t[ysp - h(x)] dτ (6)

I ) 1
2

γ1
2(u1 - uj1)

2 + 1
2

γ2
2(u2 - uj2)

2 (7)

dI
du2

) 0 ) γ1
2(u1 - uj1)

∂u1
∂u2

+ γ2
2(u2 - uj2) (8)

∂u1
∂u2

) -
Lg2

Lf
r-1h(x)

Lg1
Lf
r-1h(x)

(9)

u2 )
RLg2

Lf
r-1h(x)

[Lg1
Lf
r-1h(x)]2 + R[Lg2

Lf
r-1h(x)]2

[v - Lf
rh(x)] +

[Lg1
Lf
r-1h(x)]2uj2 - RLg1

Lf
r-1h(x)Lg2

Lf
r-1h(x) uj1

[Lg1
Lf
r-1h(x)]2 + R[Lg2

Lf
r-1h(x)]2

(10)

u1 )
Lg1

Lf
r-1h(x)

[Lg1
Lf
r-1h(x)]2 + R[Lg2

Lf
r-1h(x)]2

[v - Lf
rh(x)] +

R[Lg2
Lf
r-1h(x)]2uj1 - Lg1

Lf
r-1h(x) Lg2

Lf
r-1h(x) uj2

[Lg1
Lf
r-1h(x)]2 + R[Lg2

Lf
r-1h(x)]2

(11)
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This corresponds to the case where the cost associated
with manipulating u2 is much higher than the cost of
manipulating u1. Consequently, u1 provides the linear-
izing feedback, while u2 is maintained at its steady-state
value. In the limit as R f ∞, u1 ) uj1 and the control
law for u2 becomes:

In this case, the cost of manipulating u1 is much higher
than the cost of manipulating u2. Therefore, u2 is active
and u1 is held at its steady-state value.

The proposed control strategy can provide a simple
and effective means for overcoming the singularity
problem. The point x0 is termed a singular point with
respect to ui if LgiLf

r-1h(x0) ) 0, but LgiLf
r-1h(x) * 0 for

some points x in a neighborhood of x0 (Henson and
Seborg, 1992; Hirschorn and Davis, 1987). Standard
input-output linearizing control laws based on a single
input ui are not well-defined on the singularity manifold,
which is defined as: Ms ) {x: LgiLf

r-1h(x) ) 0}. As an
illustration, consider the linearizing control law (12)
obtained when u2 is held at its steady-state value.
Because the term Lg1Lf

r-1h(x) appears in the denomi-
nator, the controller produces unbounded values of u1
on the singularity manifold. Although design tech-
niques for systems with singularities have been pro-
posed, the resulting control laws provide only approxi-
mate linearization and/or are difficult to analyze (Castillo,
1991; Crouch et al., 1991; Hauser et al., 1992b). By
contrast, singularities are handled easily with the
habituating control strategy. On the singularity mani-
fold where Lg1Lf

r-1h(x) ) 0, u1 ) uj1 and the control law
(13) with the last term vanishing is obtained for u2. At
points where Lg2Lf

r-1h(x) ) 0, u2 ) uj2 and the control
law for u1 is (12) with the last term vanishing. Note
that the control laws are not well-defined at points
where Lg1Lf

r-1h(x) ) Lg2Lf
r-1h(x) ) 0.

3.2. Different Relative Degrees. Now the control-
ler design procedure is generalized to systems in which
the two inputs have different relative degrees. Without
loss of generality, assume that the relative degree of the
first input is less than the relative degree of the second
input: r1 < r2. When computing derivatives of the
output, we assume that u2 appears via the vector field
f(x) rather than g1(x). This simplifies the controller
design since it ensures that u2 will first appear in the
r2th derivative via the function Lg2Lf

r2-1h(x).

The first step is to construct an extended system
(Henson and Seborg, 1990; Nijmeijer and van der
Schaft, 1990) in which the two manipulated inputs have
the same relative degree. The extended system is
obtained by introducing µ) r2 - r1 integrators into the
u1 input channel,

where zi represent controller state variables and w1 is
a new manipulated input that replaces u1 in the
controller design. The extended system has the follow-
ing state-space representation:

By defining xe ) [xT zT]T and w2 ) u2, the extended
system can be rewritten as:

By construction, the manipulated inputs w1 and w2
have the same relative degree r ) r2. The extended
system can be used to design the nonlinear control laws
as described in the previous section, where the form of
the input v in (6) is modified accordingly. It is important
to remember that w1 ) u1

(µ) when analyzing the result-
ing control laws. Based on the equal relative degree
case, the following results are easily derived:
1. In the limit as R f 0, u2 ) uj2 and u1 provides the

linearizing feedback.
2. In the limit as R f ∞, u1

(µ) ) uj1
(µ) ) 0. If u1(0) ) uj1

and the system is initially at rest, then u1 ) uj1 and u2
provides the linearizing feedback.
3. At points where Lg1Lf

r1-1h(x) ) 0, u1
(µ) ) uj1

(µ) ) 0 and
both inputs contribute to the linearizing feedback. If µ
) 1, then u1 is held constant on the singularity manifold.
4. At points where Lg2Lf

r2-1h(x) ) 0, u2 ) uj2 and u1
provides the linearizing feedback.
5. At steady state, u2 ) uj2 and u1 maintains the

output at the setpoint.
By analogy to linear habituating control (Henson et

al., 1995), the final result shows that u1 and u2 can be
identified as the primary input and secondary input,
respectively.
3.3. Local Stability. Next we perform a local

stability analysis of the closed-loop system obtained with
the habituating controller. Of particular interest is the
case where the zero dynamics associated with one of the
inputs is unstable. Standard input-output lineariza-
tion techniques based on a single input cannot be
applied to such nonminimum phase systems. Below we
show that nonlinear habituating control can provide an
effective method for overcoming the nonminimum phase
problem.
The zero dynamics associated with the input u1 are

constructed as follows. Under the linearizing control
law (12), there exists a nonlinear coordinate transfor-

u1 ) 1
Lg1

Lf
r-1h(x)

[v - Lf
rh(x)] -

Lg2
Lf
r-1h(x)

Lg1
Lf
r-1h(x)

uj2 (12)

u2 ) 1
Lg2

Lf
r-1h(x)

[v - Lf
rh(x)] -

Lg1
Lf
r-1h(x)

Lg2
Lf
r-1h(x)

uj1 (13)

z̆1 ) z2
·
·
·

z̆µ-1 ) zµ

z̆µ ) w1

u1 ) z1

(14)

[ x̆
z̆1
·
·
·

z̆µ-1

z̆µ

] ) [f(x) + g1(x) z1
z2
·
·
·
zµ

0
] + [00···0

1
]w1 + [g2(x)0

·
·
·
0
0

]u2 (15)

y ) h(x)

x̆e ) fe(xe) + g1e(xe) w1 + g2e(xe) w2 (16)

y ) he(xe)
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mation [êT, ηT] ) ΦT(x) such that the nonlinear system
(1) has the following normal form representation (Isi-
dori, 1989):

The zero dynamics are defined as dynamics of the (n -
r1)-dimensional nonlinear subsystem when the variables
of the r1-dimensional linear subsystem ê ) 0:

Stability of the zero dynamics is a necessary and
sufficient condition for the control law (12) to yield local
closed-loop stability (Byrnes and Isidori, 1988). The
zero dynamics associated with the input u2 can be
derived similarly. Note that the introduction of integra-
tors does not affect the stability of the zero dynamics
(Isidori, 1989).
Stability analysis is based on the Jacobian approxi-

mation of the extended nonlinear system (16):

The input-output behavior of the linearized system can
be represented as,

whereN(s)/D(s) and N̂(s)/D(s) are (possibly nonminimal)
realizations of the transfer functions y(s)/u1(s) and
y(s)/u2(s), respectively. It is important to note that the
zeros of the transfer function y(s)/u1(s) are identically
equal to the eigenvalues of the linearized version of the
zero dynamics (18) (Isidori, 1989). Similarly, the zeros
of the transfer function y(s)/u2(s) equal the eigenvalues
of the linearized zero dynamics associated with u2.

Theorem 1. If the characteristic polynomial

associated with the linearized zero dynamics of the
extended nonlinear system (16) is Hurwitz, then the
habituating controller is locally stabilizing.

The proof is presented in the Appendix.
If the two inputs have equal relative degrees (µ ) 0),

Theorem 1 shows that the linearized zero dynamics of
the single-input, single-output systems u1/y and u2/y are
recovered in the limit as R f 0 and R f ∞, respectively.
By contrast, only the zero dynamics of u1/y can be
recovered when the relative degrees are different (µ g
1). Corollary 1 follows directly from these observations.

Corollary 1. There exists a tuning parameter R ∈
[0, ∞) such that the habituating controller is locally
stabilizing if (i) the two inputs have equal relative
degrees and the linearized zero dynamics associated with
either u1 or u2 is stable or (ii) the two inputs have
different relative degrees and the linearized zero dynam-
ics associated with u1 is stable.

For systems that do not satisfy the conditions of
Corollary 1, there may exist values of R such that (21)
is a Hurwitz polynomial and the closed-loop system is
locally stable. Corollary 2 provides a necessary condi-
tion for the existence of a stabilizing R.

Corollary 2. If the two inputs have different relative
degrees and the linearized zero dynamics associated with
u1 are unstable, then the habituating controller is locally
stabilizing only if: (i) the linearized zero dynamics
associated with u1 and u2 do not have common eigen-
values with positive real part; and (ii) the linearized zero
dynamics associated with u1 has an even number of
eigenvalues with positive real part.

The first condition follows directly from (21), while a
proof for the second condition is presented in the
Appendix.

4. Multiple-Output Processes

Now we generalize the nonlinear habituating control
technique to multiple-output systems of the form

where x is an n-dimensional vector of state variables, u
is an m-dimensional vector of manipulated inputs, and
y is a p-dimensional vector of controlled outputs. We
assume that the number of inputs is strictly greater
than the number of outputs (m > p). The objective is
to design state feedback control laws such that the
input-output response is both linear and decoupled and
the cost of affecting control is minimized.
The ith output is said to have relative degree ri at

the point x0 if ri is the smallest integer such that
Lgj
Lf
ri-1hi(x0) * 0 for at least one j ∈ [1, m]. Therefore,

time derivatives of the outputs can be represented as
(Isidori, 1989):

We assume that the rank of the matrix A(x) at the point
x0 is greater than or equal to p. This is a necessary and
sufficient condition for achieving local input-output
decoupling with static state feedback (Isidori, 1989).
Under this assumption, the input vector can be parti-

ê̇ ) Aê + Bv

η̆ ) q(ê,η) (17)

y ) Cê

η̆ ) q(0,η) (18)

x̆e ) Axe + b1w1 + b2w2 (19)

y ) cxe

y(s) )
ân-r1

sn-r1 + ân-r1-1
sn-r1-1 + ... + â1s + â0

sµ(sn + Rn-1s
n-1 + ... + R1s + R0)

w1(s) +

â̂n-r2
sn-r2 + â̂n-r2-1

sn-r2-1 + ... + â̂1s + â̂0

sn + Rn-1s
n-1 + ... + R1s + R0

w2(s)

≡ N(s)

sµD(s)
w1(s) +

N̂(s)
D(s)

w2(s) (20)

ân-r1
N(s) + Râ̂n-r2

sµN̂(s) ) 0 (21)

x̆ ) f(x) + g(x) u (22)

y ) h(x)

[y1(r1)·
·
·

yp
(rp) ] ) [Lf

r1h1(x)
·
·
·

Lf
rphp(x)

] +

[Lg1
Lf
r1-1h1(x) · · · Lgm

Lf
r1-1h1(x)

·
·
·

· · ·
·
·
·

Lg1
Lf
rp-1hp(x) · · · Lgm

Lf
rp-1hp(x)

] u ≡
b(x) + A(x) u (23)
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tioned such that

where u1 is a p-dimensional vector, u2 is an (m - p)-
dimensional vector, A1(x) is a p × p matrix that is
invertible at x0, and A2(x) is a p × m - p matrix. Note
that the partitioning may not be unique. The input-
output decoupling control law is obtained by setting the
output derivatives equal to an m-dimensional vector of
new inputs and solving the resulting equation for u1:

Under this control law, the closed-loop system has a
linear and decoupled input-output map: yi(ri) ) vi.
Consequently, the new input vi can be designed as in
the single-output case.
We use the additional manipulated inputs u2 to design

a second state feedback control law that minimizes the
cost of affecting control. The cost function utilized is

where uj1 is the desired steady-state value of u1 and Γ1
is a diagonal matrix with non-negative elements that
correspond to the cost of manipulating the individual
inputs. The vector uj2 and matrix Γ2 represent analo-
gous quantities for u2. Minimizing I with respect to u2
yields

where the state dependence has been omitted for
simplicity. The state feedback control laws result from
simultaneous solution of the two sets of equations (25)
and (27):

The habituating controller exists if and only if these
equations have a unique solution at x0. A proof of the
following theorem is presented in the Appendix:

Theorem 2. The habituating controller exists if
rank[A1(x0)] ) p and either of the following conditions
hold: (i) rank(Γ2) ) m - p or (ii) rank(Γ1) ) p and
rank[A1

-1(x0) A2(x0)] ) m - p.

Under these conditions, (28) can be solved to yield

where the matrix ∆ ≡ Γ2 + (A1
-1A2)TΓ1(A1

-1A2) is in-
vertible at x0. It is interesting to note that the nonlinear
habituating controller reduces to the standard input-
output decoupling controller (Isidori, 1989) when the
cost associated with manipulating u2 is much higher
than the cost of manipulating u1 (Γ1 ) 0). In this case,
the control law (29) yields (25) with u2 ) uj2. A more
complicated result is obtained if the cost of manipulating
u1 is very high as compared to the cost of manipulating
u2 (Γ2 ) 0). Both u1 and u2 are needed to achieve input-
output decoupling, in general, although only u2 is
utilized if there are twice as many inputs as outputs
(m ) 2p). Note that this condition is satisfied in the
single-output case.
The habituating control technique can be advanta-

geous for processes that have singular decoupling
matrices with respect to the primary inputs (Kravaris
and Soroush, 1990). In this case, secondary inputs are
introduced and the input vector is partitioned such that
the system is input-output decouplable. Then the
weighting matrices (Γ1, Γ2) are used to determine the
relative contribution of the individual inputs. This
represents a very simple and effective approach as
compared to standard input-output decoupling tech-
niques, which do not utilize all the available inputs
(Isidori, 1989) or produce a complicated dynamic control
law using just the primary inputs (Nijmeijer and
Respondek, 1988). We currently are investigating the
stability properties of the habituating controller in the
multiple-output case.

5. Simulation Examples

Chemical Reactor. First we apply the habituating
control strategy to a nonlinear chemical reactor. The
process model describes a reversible reaction A h B that
occurs in a constant-volume, stirred-tank reactor (Econ-
omou et al., 1986),

where k1(T) ) C1 exp(-E1/RT) and k2(T) ) C2 exp(-E2/
RT). Symbol definitions and nominal operating condi-
tions are given in Table 1. Economou et al. (1986) have
designed a nonlinear internal model controller for this
system using the feed temperature Ti and effluent
concentration CB as the manipulated input (u1) and
controlled output (y), respectively. For this choice of
variables, the relative degree r1 ) 2 and the linearizing
control law is singular on the manifold:

u1 ) [A1
-1 - (A1

-1A2)∆
-1(A1

-1A2)
TΓ1A1

-1](v - b) +

(A1
-1A2)∆

-1(A1
-1A2)

TΓ1uj1 - (A1
-1A2)∆

-1Γ2uj2 (29)

u2 ) ∆-1(A1
-1A2)

TΓ1A1
-1(v - b) -

∆-1(A1
-1A2)

TΓ1uj1 + ∆-1Γ2u2

ĊA ) q
V
(CAi - CA) - k1(T) CA + k2(T) CB

ĊB ) q
V
(CBi - CB) + k1(T) CA - k2(T) CB (30)

Ṫ ) q
V
(Ti - T) +

(-∆H)
FCp

[k1(T) CA - k2(T) CB]

CB )
E1k1(T)

E1k1(T) + E2k2(T)
(31)

[y1(r1)·
·
·

yp
(rp) ] ) b(x) + A1(x) u1 + A2(x) u2 (24)

u1 ) A1
-1(x) [v - b(x) - A2(x) u2] (25)

I ) 1
2
(u1 - uj1)

TΓ1(u1 - uj1) +

1
2
(u2 - uj2)

TΓ2(u2 - uj2) ≡ I1 + I2 (26)

dI
du2

)
∂I1
∂u1

∂u1
∂u2

+
∂I2
∂u2

)

-(A1
-1A2)

TΓ1(u1 - uj1) + Γ2(u2 - uj2) ) 0 (27)

[A1 A2

-(A1
-1A2)

TΓ1 Γ2 ][u1u2 ] ) [v - b
-(A1

-1A2)
TΓ1uj1 + Γ2uj2 ]

(28)
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It is interesting to note that the optimum conversion
(CB/CAi ) 0.508) belongs to the singularity manifold.
Consequently, input-output linearization should not be
applied if Ti is the only input variable.
We consider introducing an additional manipulated

input to overcome the singularity problem. Assume that
operational requirements dictate that the throughput
q remain constant. In this case, the inlet concentration
CAi may be chosen as the second input. However, large
excursions of CAi from its nominal value may lead to
increased raw material costs. Therefore, it is desirable
to use both Ti and CAi as manipulated inputs. It is easy
to show that CAi has relative degree r2 ) 2 and the
linearized zero dynamics associated with both inputs
is stable for all operating points of interest.
We compare a nonlinear habituating controller (NHC)

that manipulates both Ti and CAi and an input-output
linearizing controller (IOLC) that manipulates only Ti.
In both cases, the input v is designed to yield the closed-
loop characteristic polynomial (εs + 1)3 ) 0, where ε )
15 s. NHC is tuned with R ) 5 × 10-5, Th i ) 392.4 K,
and ChAi ) 1 mol/L. The controllers are compared for a
setpoint change to the optimum conversion (where CB
) 0.508 g/L) in Figure 1. The controllers appear to yield
the same output response. However, IOLC produces
very large control moves as the singularity at the
optimum is approached. As a result, the simulation
fails completely at approximately t ) 185 s. NHC
generates reasonable Ti changes by employing CAi as
an additional manipulated input. Note that only small
variations in CAi are needed to avoid the singularity.
Figure 1 also shows that NHC can handle much larger
setpoint changes (CB ) 0.6 g/L) without requiring large
control moves.
In Figure 2, the controllers are compared for a sudden

change in the activation energy of the second reaction
(E2 ) 1.44 × 104 cal/mol) while operating at a constant
setpoint. IOLC is unable to handle the disturbance
because the singularity manifold is encountered. As a
result, the simulation fails at t ) 310 s. NHC provides
smooth disturbance rejection and reasonable control
moves. Note that a faster response could be obtained
by retuning the controller.
In Figures 3 and 4, we utilize the following initial

conditions: CA(0) ) CB(0) ) 0.5 g/L, T(0) ) 424.9, Ti(0)
) 422.4 K. Note that these values correspond to a
steady state much closer to the optimum conversion
than the steady state in Table 1. NHC is retuned with

Th i ) 422.4 K to account for the initial condition change.
Figure 3 compares NHC and IOLC for a step distur-
bance in the inlet flow rate (q ) 1.10 L/s). IOLC is
unable to handle the disturbance because a singularity
is encountered, and the simulation fails at t ) 100 s.
By contrast, NHC provides effective disturbance rejec-
tion by employing CAi as an additional manipulated
input. Figure 3 also shows that NHC can handle much

Table 1. Nominal Operating Conditions for Chemical
Reactor

symbol definition nominal value

q inlet flow rate 1 L/s
CAi inlet concentration of A 1 mol/L
CBi inlet concentration of B 0 mol/L
Ti inlet temperature 392.4 K
V reactor volume 60 L
C1 preexponential factor for

forward reaction
5 × 103 s-1

C2 preexponential factor for
reverse reaction

1 × 106 s-1

E1 activation energy for
forward reaction

1 × 104 cal/mol

E2 activation energy for
reverse reaction

1.5 × 104 cal/mol

-∆H heat of reaction 5000 cal/mol
F density 1 kg/L
Cp heat capacity 1000 cal/kg‚K
CA effluent concentration of A 0.6 mol/L
CB effluent concentration of B 0.4 mol/L
T reactor temperature 394.4 K

Figure 1. IOLC and NHC for setpoint changes (chemical reactor).

Figure 2. IOLC and NHC for a sudden change in the activation
energy E2 (chemical reactor).
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larger flow rate disturbances (q ) 1.33 L/s). The effect
of the NHC tuning parameter R on closed-loop perfor-
mance for a flow rate disturbance (q ) 1.33 L/s) is shown
in Figure 4. As expected, the contribution of the second
input CAi increases as R is increased. In this case, larger
values of R yield improved disturbance rejection.

Biochemical Reactor. Now we apply the habituat-
ing control strategy to the following biochemical reactor
model (Henson and Seborg, 1992):

where the growth rate µ is

Symbol definitions and nominal operating conditions are
given in Table 2. A common choice for the manipulated
input (u1) and controlled output (y) are the dilution rate
D and the substrate concentration S, respectively.
These variables yield a well-defined relative degree r1
) 1, but the linearized zero dynamics associated with
u1 are unstable at the operating point in Table 2. As a
result, stable input-output linearization cannot be
achieved using D as the only input variable. An
internally stable closed-loop system can be obtained by
employing the feed substrate concentration Sf as an
additional manipulated input. However, large varia-
tions in Sf are undesirable in some applications.
We compare a nonlinear habituating controller that

manipulates both D and Sf and an input-output linear-
izing controller that manipulates only D. The dilution
rate is constrained as 0 e D e 0.1 h-1. To obtain the
control affine form (1), the second input for NHC design
is defined as u2 ) DSf. It is easy to show that this input
has relative degree r2 ) 1 and stable linearized zero
dynamics. Both controllers utilize an input v that is
designed to yield the closed-loop characteristic polyno-
mial (εs + 1)2 ) 0, where ε ) 3 h. NHC employs target
values that correspond to the operating conditions in
Table 2: Dh ) 0.04 h-1, Sh f ) 20 g/L.
Theorem 1 can be used to determine the range of R

values that yield a locally stable closed-loop system. As
mentioned above, the linearized zero dynamics associ-
ated with D are unstable when Sf is not used. However,
the stability of zero dynamics associated with D is
changed dramatically when Sf is introduced as an
additional input. It can be shown that the linearized
zero dynamics actually are stable in this case. This
seemingly anomalous result is attributable to the defi-
nition of the second input as u2 ) DSf. Consequently,
Theorem 1 shows that NHC provides local stability
when 0 < R < ∞; we choose R ) 20.

Figure 3. IOLC and NHC for step disturbances in the inlet flow
rate (chemical reactor).

Figure 4. Effect of R on NHC performance (chemical reactor).

Table 2. Nominal Operating Conditions for Biochemical
Reactor

symbol definition nominal value

D dilution rate 0.04 h-1

Sf feed substrate concentration 20 g/L
YX/S cell-mass yield 0.4 g/g
R kinetic parameter 2.2 g/g
â kinetic parameter 0.2 h-1

µm maximum specific growth rate 0.48 h-1

Pm product saturation constant 50 g/L
Km substrate saturation constant 1.2 g/L
Ki substrate inhibition constant 22 g/L
X biomass concentration 6.09 g/L
S substrate concentration 4.76 g/L
P product concentration 43.9 g/L

Ẋ ) -DX + µX

Ṡ ) D(Sf - S) - 1
YX/S

µX (32)

Ṗ ) -DP + (Rµ + â)X

µ )
µm(1 - P/Pm)S

Km + S + S2/Ki

(33)
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Figure 5 compares the two controllers for operation
at the nominal operating point in the presence of a very
small initial condition error. IOLC is unable to stabilize
the system as a result of the unstable zero dynamics,
and D saturates at the upper constraint. When the
constraint is removed, D is increased such that the
systemmoves into the minimum phase region. The new
steady state corresponds to the desired substrate con-
centration, but the product concentration (19.1 g/L) is
much less than the value in Table 2. This behavior is
undesirable in applications where a low dilution rate
and/or high product concentration are desired. Figure
6 compares the controllers for positive (5.5 g/L) and
negative (4 g/L) step changes in the substrate setpoint.
IOLC cannot handle either setpoint change. The posi-
tive setpoint change causes D to saturate at the upper
constraint, while the negative change causes saturation
at the lower constraint. When the constraints are
removed, the positive change can be handled as the
system moves into the minimum phase region. How-
ever, the closed-loop system is unstable for the negative
change. By contrast, NHC provides effective tracking
of both setpoint changes by utilizing Sf as a second
manipulated input.
The controllers are compared for a sudden change in

the cell-mass yield (YX/S ) 0.45 g/g) in Figure 7. Due to
the unstable zero dynamics, IOLC cannot handle the
disturbance as D saturates at the lower constraint. The
system moves into the minimum phase region when the
constraint is removed. NHC provides excellent distur-
bance rejection by using both D and Sf. Figure 8 shows
the effect of the NHC tuning parameter R for the same
parameter change. The disturbance rejection perfor-
mance is comparable for all three values of R. Note that
the utilization of both D and Sf is increased as R is
decreased. This behavior can be explained by consider-

ing the NHC cost function (7). In this example, a control
affine system is obtained by defining the second input
as u2 ) DSf. Unexpected control moves are observed
because DSf is penalized rather than Sf.

Figure 5. IOLC and NHC for stabilization at the nominal
operating point (biochemical reactor).

Figure 6. IOLC and NHC for setpoint changes (biochemical
reactor).

Figure 7. IOLC and NHC for a sudden change in the cell-mass
yield (biochemical reactor).
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6. Summary and Conclusions

By emulating a control strategy used in biological
systems, we have developed a controller design tech-
nique for nonlinear processes with more manipulated
inputs than controlled outputs. The motivation for
habituating control is that improved closed-loop perfor-
mance can be achieved if all the available inputs are
utilized. The nonlinear controller provides input-
output linearization while simultaneously minimizing
the cost of affecting control. In the single-output case,
we have shown that the proposed method can provide
a simple means to overcome the singularity and non-
minimum phase problems. An extension of the control-
ler design strategy for multiple-output processes also
has been presented. The habituating control technique
was successfully applied to nonlinear chemical and
biochemical reactor models.
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Appendix

Proof of Theorem 1. First we consider the Jacobian
linearization (19) of the extended nonlinear system
assuming that the two inputs have equal relative

degree. The associated transfer function model (20)
allows a convenient representation of the linear plant
operator in observability canonical state-space form:

Corresponding to this state-space model, we introduce
the following definition of Ã, b̃1, b̃2, and c̃:

It is shown by Isidori (1989) that one can construct an
invertible transformation,

which partitions the state vector into observable (ê) and
unobservable (η) variables. Internal stability of the
input-output linearized system requires that the un-
observable dynamics are stable. The unforced sub-
system of unobservable state variables, also known as
the zero dynamics, is obtained by setting ê ) 0:

Figure 8. effect of R on NHC performance (biochemical reactor).

z̆ )

(0 0 0 · · · · · · · · · · · · 0 -R0

1 0 0 · · · · · · · · · · · · 0 -R1

·
·
·

·
·
·

0 0 0 · · · 1 0 · · · 0 -Rn-r

0 0 0 · · · 0 1 · · · 0 -Rn-r-1

·
·
·

·
·
·

0 0 0 · · · · · · · · · · · · 0 -Rn-2

0 0 0 · · · · · · · · · · · · 1 -Rn-1

)z +

(â0
â1

·
·
·

ân-r

0
·
·
·

0

0

)u1 + (â̂0
â̂1

·
·
·

â̂n-r

0
·
·
·

0

0

)u2 (34)

y ) (0 ... 0 1)z

z̆ ) Ãz + b̃1u1 + b̃2u2 (35)

y ) c̃z

( ê1
ê2
ê3
·
·
·

êr
η1
·
·
·

ηn-r

) ) Tx ) ( c̃z
c̃Ãz

c̃Ã2z
·
·
·

c̃Ãr-1z
z1
·
·
·

zn-r

) (36)
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The Jacobian linearization of the habituating controller
(10)-(11) is given by:

When these relations are substituted into (37), the
following result is obtained:

It is straightforward to show that the stability of this
subsystem is equivalent to the condition stated in the
theorem; that is, the polynomial

is Hurwitz.
Now consider the case where the two inputs have

different relative degrees. The transfer function model
(20) can be manipulated such that the individual
transfer functions have a common denominator:

This model has the same form as that in the equal
relative degree case. Recall that the final result hinged
upon the stability of a weighted version of the individual

numerator polynomials. In this case the numerator
polynomial for w2 is modified as shown, and the result
in the theorem is obtained.
Proof of Corollary 2. Let N(s) be the numerator

polynomial associated with u1 and N̂(s) be the numera-
tor polynomial for u2:

We want to check the roots of the characteristic equa-
tion:

By assumption, the input u1 is nonminimum phase and
has a lesser relative degree than u2 (i.e., N(s) contains
right-half plane roots and r2 - r1 > 0). We define two
real-valued functions over the polynomials:

Note the following:

Thus, to prove the corollary, it is sufficient to show that
ân-r1â0 e 0 for an odd number of right-half plane (RHP)
zeros since the first criterion of the Routh-Hurwitz test
fails in this case.
First note that ân-r1 * 0. If ân-r1â0 ) 0, then â0 ) 0,

which implies thatM(s) has a root at the origin for any
value of the tuning parameter R and any number of
additional closed RHP roots. This implies M(s) is not
Hurwitz.
Now assume â0 * 0 and write N(s) ) Q(s) P(s), where

Q(s) contains all the open left-half plane (LHP) roots of
N(s) and P(s) contains all the closed right-half plane
(RHP) roots. Since Q(s) has only negative roots, the
following must be true:

Further partition P(s) ) Pc(s) Pr(s), where Pc(s) contains
all the closed RHP complex roots and Pr(s) contains all
the RHP real roots. First we consider the contributions
from Pc(s),

where aici > 0 and aibi e 0. It is clear that the following
holds:

Now we consider the contribution of Pr(s),

η̆ ) (0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
·
·
·

·
·
·

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

)η + ( â0
â1
·
·
·

ân-r-2

ân-r-1

)u1 +

( â̂0
â̂1
·
·
·

â̂n-r-2

â̂n-r-1

)u2 (37)

u1 )
ân-r

ân-r
2 + Râ̂n-r

2
(v - zn-r) (38)

u2 )
Râ̂n-r

ân-r
2 + Râ̂n-r

2
(v - zn-r)

η̆ )

(0 0 0 · · · 0 0 -
â0ân-r + Râ̂0â̂n-r

ân-r
2 + Râ̂n-r

2

1 0 0 · · · 0 0 -
â1ân-r + Râ̂1â̂n-r

ân-r
2 + Râ̂n-r

2

·
·
·

·
·
·

0 0 0 · · · 1 0 -
ân-r-2ân-r + Râ̂n-r-2â̂n-r

ân-r
2 + Râ̂n-r

2

0 0 0 · · · 0 1 -
ân-r-1ân-r + Râ̂n-r-1â̂n-r

ân-r
2 + Râ̂n-r

2

)η

(39)

Râ̂n-rN̂(s) + ân-rN(s) (40)

y(s) )
N(s) w1(s) + sµN̂(s) w2(s)

sµ D(s)
≡

Ñ1(s) w1(s) + Ñ2(s) w2(s)

D̃(s)
(41)

N(s) ) ân-r1
sn-r1 + ân-r1-1

sn-r1-1 + ... + â1s + â0

N̂(s) ) â̂n-r2
sn-r2 + â̂n-r2-1

sn-r2-1 + ... + â̂1s + â̂0

ân-r1
N(s) + Râ̂n-r2

sr2-r1N̂(s) ≡M(s) R g 0

{LC(p(x)): F[x] f R} ≡
coefficient of the lowest degree of x in p(x)

{HC(p(x)): F[x] f R} ≡
coefficient of the highest degree of x in p(x)

LC(M(s)) ) ân-r1
â0

HC(M(s)) ) ân-r1
2 + Rân-r2

2 > 0 ∀ R g 0

HC(Q(s))‚LC(Q(s)) > 0

Pc(s) )

(a1s
2 + b1s + c1)(a2s

2 + b2s + c2) ... (als
2 + bls + cl)

HC(Pc(s))‚LC(Pc(s)) ) (a1a2 ... al)(c1c2 ... cl) )
(a1c1)(a2c2) ... (alcl) > 0

Pr(s) ) (a1s + b1)(a2s + b2) ... (aps + bp)
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where ai, bi ∈R are such that aibi < 0. If p is even and
if an odd number of ai < 0, then an odd number of bi <
0. Similarly, if p is even and an even number of ai < 0,
then an even number of bi < 0. This shows that

HC(Pr(s)) < 0 w LC(Pr(s)) < 0

HC(Pr(s)) > 0 w LC(Pr(s)) > 0

which implies that HC(Pr(s))‚LC(Pr(s)) > 0 if there is
an even number of real roots in Pr(s). If p is odd then,

Pr(s) ) (γs + δ)(ap-1s
p-1 + ... + a0)

where γδ < 0 and ap-1a0 > 0. Thus, if p is odd:

HC(Pr(s))‚LC(Pr(s)) ) (γap-1)(δa0) ) (γδ)(ap-1a0) < 0

We now can combine all the contributions to N(s):

ân-r1
â0 ) HC(N(s))‚LC(N(s))

) HC(Q(s))‚HC(Pc(s))‚HC(Pr(s))‚LC(Q(s))‚
LC(Pc(s))‚LC(Pr(s))

) [HC(Q(s))‚LC(Q(s))][HC(Pc(s))‚
LC(Pc(s))][HC(Pr(s))‚LC(Pr(s))]

Thus,

ân-r1
â0 {< 0 if N(s) contains an odd number of RHP roots

> 0 if N(s) contains an even number of RHP roots

and the proof is complete.
Proof of Theorem 2. The set of equations (28) has

a unique solution if the m × m matrix

[A1(x) A2(x)
-(A1

-1(x) A2(x))
TΓ1 Γ2 ] (42)

has full rankm at x0. For simplicity, we omit the state
dependence of the matrices. Because A1 is invertible
by assumption, the first set of equations in (28) can be
premultiplied by A1

-1 to yield the matrix:

[Ip A1
-1A2

-(A1
-1A2)

TΓ1 Γ2 ] (43)

This matrix can be rewritten as follows after a simple
row reduction operation:

[Ip A1
-1A2

0 Γ2 + (A1
-1A2)

TΓ1(A1
-1A2) ] (44)

Because of its block diagonal structure, this matrix is
full rank, and therefore the equations (28) have a unique
solution, if:

rank[Γ2 + (A1
-1A2)

TΓ1(A1
-1A2)] ) m - p (45)

It is easy to show that this condition holds if either of
the two assumptions in the theorem are satisfied.
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