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We propose a nonlinear model reference adaptive control strategy in which a linear model (or
a set of linear models) is embedded within the nonlinear controller. The technique is applicable
to single-input, single-output nonlinear processes with stable zero dynamics and full-state
feedback. The nonlinear control law is constructed by embedding linear controller gains obtained
from a linear model or multiple linear models. The higher-order controller functions are
approximated with locally supported radial basis functions centered in the state space. The
number of basis functions is determined a priori, and an on-line pruning algorithm is utilized
to ensure functions centered near the current operating point are active. Parameter update laws
that guarantee (under certain assumptions) that the plant output asymptotically tracks the
output of a linear reference model and the state vector remains bounded are derived via Lyapunov
stability analysis. The proposed control strategy is compared to a linear state feedback controller
and a linear multimodel adaptive controller using a nonlinear chemical reactor model.

1. Introduction

Most nonlinear control strategies require a nonlinear
dynamic model of the process to be controlled.1 Unfor-
tunately, first-principles modeling is difficult to apply
to processes that are poorly understood and/or highly
complex. An alternative approach is to develop an
empirical model from input/output data via nonlinear
system identification.2 While a variety of techniques
have been proposed, there are a number of unresolved
theoretical and practical issues that severely limit their
applicability.

The modeling step can be eliminated entirely if a
satisfactory method for direct construction of the con-
troller is available. Model reference adaptive control
(MRAC) provides a framework for synthesizing linear
control laws in the absence of explicit linear models.3
The lack of a systematic methodology for constructing
the appropriate controller form and determining stable
parameter update laws is the biggest obstacle associated
with extending the MRAC approach to nonlinear sys-
tems. A number of investigators have proposed MRAC
techniques for nonlinear systems.4-13 However, these
methods assume a suitable nonlinear model is available
for controller design. This assumption is eliminated in
the proposed method where the complications associated
with nonlinear model development are replaced by the
challenging problem of on-line controller construction.

We recently proposed a nonlinear MRAC strategy
based on radial basis function (RBF) networks.14 The
technique is applicable to input/output linearizable
(IOL) nonlinear systems with full-state feedback. It is
important to emphasize that the IOL approach is
restricted to nonlinear systems with well-defined rela-
tive degree and stable zero dynamics.15,16 The major
advantage of the proposed method is that controller
design can be performed without a detailed nonlinear
model. The only structural information needed is the
relative degree and the sign of the high-frequency gain.

Unknown controller functions are approximated with
RBFs that are introduced only in regions of the state
space where the closed-loop system actually evolves.
Lyapunov stability analysis is used to derive parameter
update laws that ensure that the state vector remains
bounded and the plant output asymptotically tracks the
output of a linear reference model. The proposed method
has been successfully applied to a nonlinear biochemical
reactor model.

A disadvantage of this approach is that the under-
lying process dynamics are completely unknown to the
nonlinear controller prior to on-line adaptation. Conse-
quently, the closed-loop system can exhibit poor tran-
sient performance, and even instability, during training.
In this paper, we propose a nonlinear MRAC strategy
based on local linear models that addresses this short-
coming. A linear model is used to synthesize a linear
controller that provides a satisfactory closed-loop per-
formance near the nominal operating point. The linear
controller gains are embedded in the nonlinear control-
ler by adapting RBFs to approximate higher-order terms
in the Taylor series expansion of the unknown input/
output linearizing controller functions. The tracking
problem is addressed by embedding multiple linear
models, each of which reflect the process dynamics
around a desired operating point. The proposed control-
lers are compared to a linear state feedback controller
and a linear multiple-model adaptive controller (MMAC)
using a nonlinear chemical reactor example.

The remainder of the paper is organized as follows.
In section 2, the basic nonlinear MRAC strategy is
introduced and simulation results for the chemical
reactor example are presented. In section 3, the non-
linear MRAC strategy with a single embedded linear
model (ELM) is described and compared to a fixed gain
state feedback controller. In section 4, a novel MMAC
technique is developed by extending the controller
design method in section 3 to handle multiple linear
models. The nonlinear MMAC controller is compared
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to a linear MMAC controller. Conclusions are presented
in section 5.

2. Basic Nonlinear MRAC Strategy

Consider a nonlinear system of the form

where x is an n-dimensional vector of measured state
variables, u is a scalar-manipulated input, y is a scalar-
controlled output, and the functions f(x) and g(x) are
unknown. The objective is to make the controlled output
(y) track the output of a linear reference model (ym).
Figure 1 shows a simplified block diagram of the
nonlinear MRAC scheme. The nonlinear controller uses
the setpoint (r) and the state vector (x) to compute the
manipulated input (u) introduced to the plant. The plant
output is compared to the output of a linear reference
model that represents the desired setpoint response of
the closed-loop system. The tracking error (e) is used to
adapt the controller parameters (θ) such that the
desired closed-loop response is obtained asymptotically.
The following reference model is appropriate for non-
linear systems of relative degree 1:

where ysp is the setpoint and γ > 0 is a controller tuning
parameter. The input/output linearizing control law that
achieves the model-matching objective is16,17

where Lfh(x) and Lgh(x) are Lie derivatives. This control
law cannot be implemented if the functions f(x) and g(x)-
are unknown. We propose to construct the controller
functions r*(x) and â*(x) directly via on-line adaptation.
The development presented below can be extended to
higher relative degree systems using the filtered regres-
sor approach to derive the parameter update laws.11,14

2.1. Nonlinear Controller Design. The goal is to
construct on-line estimates of the controller functions
r*(x) and â*(x) such that input/output linearization is
achieved asymptotically given measurements of the
state variables x(t) and the sign of â*(x), which is the
nonlinear analogue of the high-frequency gain.14 The
functions are approximated as

where r and â are vectors of time-varying controller
parameters, O(x) is a vector of basis functions, and N is
the number of basis functions employed. The resulting
control law has the form

We utilize a locally supported RBF of the form18

where n is the number of state variables, c is the basis
function center, and aj are scaling parameters. As
compared to RBFs with global support such as the
Gaussian,10 the locally supported basis function (6)
offers computational advantages because only a subset
of the controller parameters have to be updated at any
particular time.

Two assumptions are invoked to facilitate Lyapunov
design of the parameter update laws. The first assump-
tion that âTO(x) * 0 ensures that the nonlinear control
law (5) remains well-defined. Because the sign of â*(x)
is assumed to be known, this condition often can be
satisfied by careful initialization of the â controller
parameters. The second assumption ensures the exist-
ence of “true” controller parameters r* and â* that
achieve model matching:

This implies that perfect estimation of the controller
functions throughout the entire state space is possible.
This assumption does not strictly hold in practice, but
results for globally supported RBFs show that the
controller functions can be approximated arbitrarily well
on a compact set if a sufficient number of basis functions
are employed.19 It is important to note that the condition
(7) is not required to successfully apply the adaptive
control strategy.

Under the above assumptions, the dynamics of the
tracking error e ≡ ym - y can be written as

where Ψ1 ≡ r - r* and Ψ2 ≡ â - â* are parameter
error vectors. The form of the error dynamics suggests
the following parameter update laws:3

where ηi > 0 are adjustable adaptation gains.

Figure 1. Block diagram of the nonlinear MRAC strategy.

x3 ) f(x) + g(x) u

y ) h(x) (1)

y̆m ) -γym + γysp (2)

u )
-Lfh(x) - γh(x) + γysp

Lgh(x)
≡ -R*(x) + γysp

â*(x)
(3)

r*(x) = ∑
i)1

N

Riφi(x) ) rT
φ(x)

â*(x) = ∑
i)1

N

âiφi(x) ) âT
φ(x) (4)

u )
-RT

φ(x) + γysp

âT
φ(x)

(5)

O(r) ) {(1 - r)4(1 + 4r + 3r2 + 0.75r3) r ∈ [0, 1]
0 elsewhere

(6)

r2 ) ∑
j)1

n (xj - cj)
2

aj
2

r*T
φ(x) ) Lfh(x) + γh(x)

â*T
φ(x) ) Lgh(x) (7)

ĕ ) -γe + Ψ1
T
φ(x) + Ψ2

T
φ(x) u (8)

Ψ4 1 ) r3 ) -η1eO(x)

Ψ4 2 ) â4 ) -η2eO(x) u (9)
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2.2. Basis Center Generation. The analysis pre-
sented above is based on the assumption that the RBF
centers are fixed. This implies that basis functions are
placed throughout the entire state space because tra-
jectories of the closed-loop system cannot be predicted
a priori. In our previous work,14,18 we have addressed
this problem by placing potential locations for basis
function centers on a regular grid in the state space. A
particular basis function is activated only if the closed-
loop system evolves “near” its center. A disadvantage
of this approach is that a very large number of basis
functions may be activated if the process is high-
dimensional and/or operates in several regions (e.g., a
chemical reactor with several different steady-state
operating conditions). This results in a large number
of adjustable controller parameters, each of which has
an associated differential equation of the form (9).

To address this shortcoming, we propose an on-line
pruning algorithm. The mesh size is determined from
a priori estimates of the smoothness of the unknown
controller functions.10 Then the scaling factors (aj) are
chosen to fix the coverage of a single basis function. This
allows the maximum number of basis functions that can
be active at any particular time to be determined. The
maximum number of active functions is used as the
fixed size of the network (N). Only active functions
centered near the current operating point are contained
in the network. As the operating point changes, new
active centers are added and old inactive centers are
pruned. The proposed method allows a simple initializa-
tion procedure because the centers being added/pruned
are far removed from the current operating point and
their contribution is small. Although stability and
convergence results are derived assuming fixed centers
throughout the entire state space, the simulation results
in sections 3 and 4 demonstrate that the proposed center
placement scheme can yield good closed-loop perfor-
mance.

2.3. Simulation Results. The chemical reactor shown
in Figure 2 is used to evaluate the nonlinear MRAC
strategy. The model equations for a single irreversible
reaction A f B are20

where CA is the reactor concentration of component A,
T is the reactor temperature, Tc is the temperature of
the fluid in the cooling jacket, and Tf is the temperature

of the feed stream. The remaining variables are defined
elsewhere.20 Nominal operating conditions are given in
Table 1. The manipulated input and controlled output
are the coolant temperature (u ) Tc) and the reactor
temperature (y ) T), respectively. The resulting non-
linear system has relative degree 1. The input is
constrained as follows to maintain feasible operation:
280 K e Tc e 370 K. The tuning parameters are chosen
as γ ) 2 min-1, η1 ) 100, and η2 ) 0.005. The mesh
size for centers is 0.05 g/L and 5 K for CA and T,
respectively. The basis functions are scaled with a1 )
0.2 g/L and a2 ) 15 K. For the following simulations, a
fixed network consisting of 24 basis functions is used.

The performance of the nonlinear MRAC controller
for a setpoint change from a stable steady state where
T ) 383.8 K to an unstable steady state where T ) 363.8
K is shown in Figure 3. The temperature tracks the
output of the reference model, but it exhibits bursting
behavior before and after the setpoint change. The
bursting appears to be caused by initialization of the
RBF weights when new centers are introduced to the
network. The weights must be carefully initialized such
that the control law remains well-behaved. We have not
found initial weights or controller tuning parameters
that eliminate the bursting behavior. Figure 4 shows
the regulatory performance at an unstable steady state
for a feed temperature (Tf) disturbance from the nominal
value (350 K) to a larger value (380 K). The controller
provides excellent disturbance rejection as the reactor
temperature is maintained within 1 K of the setpoint.
However, the input exhibits bursting behavior during
initialization. These results provide the motivation for
modifying the nonlinear MRAC strategy to obtain
improved transient performance.

3. Nonlinear MRAC with an ELM

The nonlinear MRAC technique is based on the
assumption that the underlying process dynamics are
completely unknown prior to on-line adaptation. As
shown for the CSTR example, this can result in a poor

Figure 2. Continuous stirred tank reactor.

Figure 3. Nonlinear MRAC for setpoint change.

Table 1. Nominal Operating Conditions

variable value variable value

q 100 L/min E/R 8750 K
CAf 1 mol/L k0 7.2 × 1010 min-1

Tf 350 K UA 5 × 104 J/min‚K
V 100 L F 1000 g/L
(-∆H) 5 × 104 J/mol Cp 0.239 J/g‚K

ĊA ) q
V

(CAf - CA) - k0 exp(- E
RT)CA

Ṫ ) q
V

(Tf - T) +
(-∆H)

FCp
k0 exp(- E

RT)CA +

UA
VFCp

(Tc - T) (10)
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transient performance, and even instability, during
training. In many process applications, some dynamic
information is known or can be obtained from plant
data. In particular, linear dynamic models can be
developed for nominal operating points using well-
developed linear system identification techniques.21

These linear models can be used to synthesize linear
controllers that provide approximate model matching
near the associated operating points. In this section, we
show how the controller gains obtained from a single
linear model can be embedded within the nonlinear
controller to yield a nonlinear MRAC strategy with a
simpler initialization procedure and an improved tran-
sient performance. We focus on the relative degree 1
case. As shown in the Appendix, the following develop-
ment can be extended to higher relative degree systems
using the filtered regressor approach.11,14

3.1. Taylor Series Expansion. Consider the linear
model

where x′ ) x - xj, u′ ) u - uj, and y′ ) y - yj are deviation
variables and xj, uj, and yj represent the steady-state
operating points of interest. The matrices A, b, and c
can be determined using standard linear system iden-
tification techniques.21 The linear controller that pro-
vides local model matching with respect to the reference
model (2) is

where k1 and k2 are linear controller gains.
Now consider the nonlinear control law (3), which can

be rewritten as

The linear approximation of this equation about the
steady state (xj, uj, yjsp) is

The linear approximation can be written as

where kl and k2 are the linear controller gains that are
embedded within the nonlinear MRAC controller de-
rived below.

Consider Taylor series expansions of the unknown
nonlinear controller functions:

As shown in the Appendix, substitution of these expan-
sions into (13) yields

where R̃(x′) represents second-order and higher terms
in R*(x) and â*(x) uj, while ẫ(x′) represents first-order
and higher terms in â*(x). Thus, the input/output
linearizing control law (3) has the following deviation
form:

3.2. Parameter Estimation. By embedding the
linear controller gains as in (18), the nonlinear controller
design problem is reduced to approximating the higher-
order functions R̃(x′) and ẫ(x′). We assume the functions
can be represented as

where r* and â* are vectors of unknown constant
parameters, O(x′) is a vector of basis functions, and N is
the number of basis functions. As discussed previously,
in practice the relations (19) will hold only in an
approximate sense. The control law (18) can be rewrit-
ten as

An implementable control law is obtained by replacing
the unknown controller parameters with adjustable
parameters r(t) and â(t)

where we assume k2 + âTO(x′) * 0 to ensure the control
law remains well-defined. Because k2 and â*(x′) have

Figure 4. Nonlinear MRAC for feed temperature disturbance.

x̆′ ) Ax′ + bu′
y′ ) cx′ (11)

u′ )
-cAx′ - γcx′ + γy′sp

cb
≡ -k1x′ + γy′sp

k2
(12)

r*(x) + â*(x) u ) γysp (13)

[∂r*(x)
∂x

+ uj
∂â*(x)

∂x ]xj
(x - xj) + â*(xj) (u - uj) )

γ(ysp - yjsp) (14)

k1x′ + k2u′ ) γy′sp (15)

r*(x) ) R*(xj) + [∂r*(x)
∂x ]

xj
(x - xj) +

1
2![∂2r*(x)

∂x2 ]
xj
(x - xj)2 + ...

â*(x) ) â*(xj) + [∂â*(x)
∂x ]

xj
(x - xj) +

1
2![∂2â*(x)

∂x2 ]
xj
(x - xj)2 + ... (16)

[k1x′ + R̃(x′)] + [k2 + ẫ(x′)]u′ ) γy′sp (17)

u′ )
-[k1x′ + R̃(x′)] + γy′sp

k2 + ẫ(x′)
(18)

R̃(x′) ) ∑
i)1

N

Ri
/Oi(x′) ) R*T

φ(x′)

ẫ(x′) ) ∑
i)1

N

âi
/Oi(x′) ) â*T

φ(x′) (19)

u′ )
-[k1x′ + r*TO(x′)] + γy′sp

k2 + â*TO(x′)
(20)

u′ )
-[k1x′ + rTO(x′)] + γy′sp

k2 + âTO(x′)
(21)
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the same sign, this assumption usually can be satisfied
by initializing the controller with â(0) ) 0 and using
an adaptation gain that makes âTO(x′) an order of
magnitude smaller than k2. This initialization procedure
is considerably simpler than that required for the
nonlinear MRAC technique without an ELM. The locally
supported RBF (6) is used to approximate the unknown
controller functions, and the RBF centers are allocated
as discussed in section 2.2.

Update laws for the controller parameters r(t) and
â(t) are derived via Lyapunov stability analysis. The
derivative of the output along the system trajectories
is

The following relation is obtained from (22) in the
Appendix:

where Ψ1 ) r - r* and Ψ2 ) â - â*. The tracking error
e ≡ ym - y has the dynamics

This error equation suggests the following gradient
update laws:3

where ηi > 0 are adjustable adaptation gains.
Closed-loop stability can be analyzed using the

Lyapunov function:

The following assumptions are invoked:
1. The nonlinear system (1) has well-defined relative

degree and zero dynamics that are exponentially stable
and Lipschitz continuous.11

2. The matching conditions (19) are satisfied.
3. The control law (21) remains well-defined in the

sense that k2 + âTO(x′) * 0.
Under these conditions, the derivative of V along

trajectories of the error system is V̇ ) -γ1e2 e 0. This
establishes that e, Ψ1, and Ψ2 are bounded and that e
is square integrable.22 The exponential stability and
Lipschitz continuity assumptions imposed on the zero
dynamics ensure that x′ is bounded and e is uniformly
continuous.11 It follows from Barbalat’s Lemma22 that
limtf∞ e(t) ) 0. This result demonstrates that the
proposed method ensures boundedness and asymptotic

tracking under rather idealized conditions. In the fol-
lowing section, the performance of the adaptive nonlin-
ear controller under more realistic conditions is evalu-
ated.

3.3. Simulation Results. The nonlinear MRAC
strategy with an ELM is evaluated using the chemical
reactor model described in section 2.3. The linear
controller gains are obtained from one of the linear
models in Table 2 (see below). The tuning parameters
are chosen as γ ) 2 min-1, η1 ) 75, and η2 ) 0.005. The
mesh size and scaling factors are the same as those in
section 2.3, except that the number of active centers is
reduced to 20 to decrease the computational burden. The
centers of the RBFs are determined on-line using the
procedure described in section 2.2.

We compare the nonlinear controller to a linear state
feedback controller designed using one of the linear
models in Table 2 (see below). To include an explicit
integral term, the controller design is based on a second-
order reference model rather than the first-order model
(2). The resulting control law has the form

where γi > 0 are controller tuning parameters chosen
such that the polynomial s2 + γ1s + γ0 is Hurwitz. The
two controllers have been tuned similarly to ensure a
fair comparison. The controller parameters are chosen
in terms of a single tuning parameter ε for both
controllers.17 For this example ε ) 0.5 min, which is
approximately one-third the open-loop time constant.
The nonlinear controller design is based on the first-
order reference model (2), yielding the tuning parameter
γ ) ε-1 ) 2 min-1. For the second-order reference model
associated with the linear controller, the tuning param-
eters are γ1 ) 2ε-1 ) 4 min-1 and γ0 ) ε-2 ) 4 min-2.

Figure 5 shows the performance of the nonlinear
MRAC controller with ELM and the linear controller
for a setpoint change from a stable operating point to
an unstable operating point. Both controllers are de-
signed using the stable model 3 in Table 2. The
nonlinear controller provides excellent tracking in the
unstable region even though the ELM is stable. While
this result is problem specific, it illustrates the robust-
ness of the proposed adaptive controller. The linear
controller produces very large input moves that hit the
input constraints. As a result, the temperature exhibits
large oscillations and the new setpoint is not achieved.
This behavior is attributable to the use of a stable model
for controller design. The advantage of the nonlinear
MRAC controller with ELM over the nonlinear MRAC
controller without ELM (Figure 3) also is apparent. The
bursting behavior during initialization and transients
is almost completely eliminated when the ELM is
included.

Table 2. Linear Models for the Chemical Reactor

steady state linear state space matricesmodel
number

stable
model CA T Tc A b c

1 yes 0.9435 314.6 292.0 [-1.06 -0.005
12.5 -2.05 ] [0

2.09 ] [0 1]

2 no 0.5 350 300 [-2.00 -0.0357
209.2 4.38 ] [0

2.09 ] [0 1]

3 yes 0.1 383.8 309.9 [-10.0 -0.0536
1889 8.13 ] [0

2.09 ] [0 1]

y̆ ) Lfh(x) + Lgh(x) u ) R*(x) - γh(x) + â*(x) u
(22)

y̆ + ) γy ) -Ψ1
TO(x′) - Ψ2

TO(x′) u′ + γysp (23)

ĕ ) -γe + Ψ1
T
φ(x′) + Ψ2

T
φ(x′) u′ (24)

Ψ4 1 ) r3 ) -η1eO(x′)

Ψ4 2 ) â4 ) -η2eO(x′) u′ (25)

V ) e2

2
+ 1

2η1
Ψ1

TΨ1 + 1
2η2

Ψ2
TΨ2

u′ )
-cAx′ + γ1(y′sp - y′) + γ0∫0

t
(r′ - y′) dτ

cb
(26)
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Figure 6 shows the performance of the nonlinear
MRAC controller with ELM and the linear controller
for a setpoint change in the unstable operating region.
Both controllers are designed using the unstable model
2 in Table 2. The linear controller produces a large
overshoot in the temperature as the input saturates at
the lower constraint. The nonlinear controller provides
excellent tracking, but the input is slightly oscillatory.

Figure 7 shows the performance of the nonlinear
MRAC controller with stable model 3 for several set-
point changes. Because a single linear model is used,
the tracking deteriorates as the setpoint moves further
from the region where the linear model is accurate. This
provides motivation for embedding multiple linear
models, as discussed in the following section. Figure 8
shows the regulatory performance of the nonlinear
MRAC controller with ELM and the linear controller
at an unstable steady state for a feed temperature
disturbance from the nominal value (350 K) to a larger
value (380 K). Both controllers are designed using
unstable model 2. The linear controller yields very poor
performance. The nonlinear controller with ELM ef-
fectively rejects the disturbance, and the input behavior
is significantly improved as compared to the nonlinear
controller without ELM (Figure 4).

4. Extension to Multiple Linear Models

Figures 5 and 6 demonstrate that the nonlinear
MRAC strategy can provide excellent tracking perfor-
mance when the setpoint is in the same region as that
used in the development of the ELM. A degradation in
performance is observed in Figure 7 when the setpoint
moves into a region with stability characteristics dif-
ferent from those of the linear model. This is attribut-
able to a fundamental change in the underlying process
dynamics that makes the ELM inappropriate for control.
Multiple linear models, each developed for a different
operating regime, should provide better setpoint track-
ing over the entire operating range than a single linear
model. This is particularly important for plants that
operate in multiple regimes and transition between
them (e.g., polymerization reactors producing multiple
grades). The proposed method of embedding multiple
linear models in the nonlinear MRAC controller can be
viewed as a nonlinear extension of the linear MMAC
approach.23-25

4.1. Controller Design. The objective of MMAC
techniques is to use the “best” model or combination of
models at the current operating point to calculate the
next control move. Typically the models are linear
because they can be obtained more readily than non-
linear models and they are more computationally ef-

Figure 5. Nonlinear MRAC with stable ELM and linear state
feedback for setpoint change: nonlinear MRAC (solid); linear
(dash-dotted).

Figure 6. Nonlinear MRAC with unstable ELM and linear state
feedback for setpoint change: nonlinear MRAC (solid); linear
(dash-dotted).

Figure 7. Nonlinear MRAC with stable ELM for multiple setpoint
changes.

Figure 8. Nonlinear MRAC with unstable ELM and linear state
feedback for feed temperature disturbance: nonlinear MRAC
(solid); linear (dash-dotted).
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ficient. Assuming that the linear models are available,
the problem is reduced to combining the models such
that linear controller gains can be calculated and
incorporated into the nonlinear control law (21).

Recently a method for combining multiple linear state
space models to generate a “global” state space model
was proposed.23 The basic idea is to generate the state
space matrices of the global model by taking weighted
sums of the state space matrices of the individual
models. Bayesian statistics are used to compute weight-
ing coefficients that reflect the relative validity of each
individual model at the current operating point. We
propose an analogous method for combining the linear
controller gains associated with each linear model to
generate a global linear controller. This approach is
preferred to the global modeling method because we are
interested in constructing the nonlinear controller
directly and complications associated with computing
the linear controller gains from the combined state space
matrices are avoided.

Based on the above discussion, the following combina-
tion rules are used:

where M is the number of linear models, Ai, bi, and ci
are the state space matrices for the ith linear model,
and Wi is the weight associated with the ith model. Note
that the current steady-state operating point (xj, uj) is
estimated as the weighted sum of the steady-state
operating points of the individual models. Using Baye-
sian estimation,23-25 the probability that the ith model
at time k represents the plant is

where εi(k) is the normalized residual for the ith model
and the diagonal matrix K is used to adjust the
estimator responsiveness. The residual is computed as

where x(k) is the state measurement at time k, xi(k) is
the state estimate obtained from the ith model at time
k, and S is a diagonal scaling matrix. Because eq 28 is
recursive, the probabilities must have a lower bound (δ)
to prevent them from remaining at zero. This is achieved
by renormalizing the probabilities to determine the
actual weights:25

4.2. Simulation Results. For the chemical reactor
described in section 2.3, three linear models correspond-

ing to different operating points are given in Table 2.
Because model 2 is unstable, the Bayesian estimation
scheme cannot use simple open-loop observers to gener-
ate the state predictions. To ensure bounded state
estimates, a closed-loop observer is designed for each
model

where Li is the observer gain. Typically, the observer
poles are chosen such that the observer responds
significantly faster than the controller. In this example,
the gains Li are chosen to place the observer poles at
-20. The residual can be rewritten as

where

We compare the proposed nonlinear MMAC controller
to a linear MMAC controller, both of which use the state
estimation scheme described above. The tuning param-
eters for the nonlinear MMAC controller are chosen as
γ ) 2 min-1, η1 ) 50, η2 ) 0.005, δ ) 0.005, and

The centers of the RBFs are determined on-line using
the procedure in section 2.2. The mesh size and scaling
factors are the same as those given in section 2.3, but
for this example the network consists of only 20 active
basis functions. The control law for the linear MMAC
scheme is (26), and the tuning parameters are chosen
as γ1 ) 2 min-1, γ0 ) 1 min-2, δ ) 0.005, and

In the following simulations, the nonlinear controller
is initialized such that the linear model with the
nominal operating point closest to the initial operating
point is assigned a weighting of 1 - 2δ, while the other
linear models are both assigned a weighting of δ.

Figure 9 shows the servo performance of the linear
MMAC controller for setpoint changes across the oper-
ating space. For the second change, the setpoint is not
attained because the estimator incorrectly switches to
the unstable model. The input is not well behaved
during this transition. Increasing the convergence factor
causes the controller to switch repeatedly between
stable and unstable models, which leads to closed-loop
instability. The linear MMAC controller also performs
unacceptably for the sixth setpoint change. This behav-
ior is due to the transition from the unstable model to
stable model 1. However, the controller performs rea-
sonably well when the setpoint remains in an operating
regime where the local stability characteristics are the
same as those of the linear model.

Figure 10 shows the servo performance of the pro-
posed nonlinear MMAC controller for the same setpoint
sequence as that in Figure 9. The controller performs
very well, although the input is somewhat oscillatory.
It is interesting to note that the first transition between

x̂′i ) Aix̂′i + biu′i + Li(y′ - y′i) (31)

εi(k) ) S[x(k) - (x̂′i(k) + xji)] (32)

S ) [ 1
0.5

0

0
1

350
] (33)

K ) [25 0
0 35 ] (34)

K ) [75 0
0 75 ] (35)

k1 ) ∑
i)1

M

Wi(ciAi + γci) k2 ) ∑
i)1

M

Wi(cibi)

uj ) ∑
i)1

M

Wiuj i xj ) ∑
i)1

M

Wixji (27)

pi(k) )
exp(-εi

T(k) Kεi(k))pi(k-1)

∑
j)1

M

[exp(-εj
T(k) Kεj(k))pj(k-1)]

(28)

εi(k) ) S[x(k) - xi(k)] (29)

Wi(k) )
pi(k)

∑
j)1

M

pj(k)

pi(k) > δ

Wi(k) ) 0 pi(k) ) δ (30)
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models occurs quite rapidly, whereas the second transi-
tion is considerably slower. For all setpoint changes, the

temperature is maintained within 2 K of the reference
model. The nonlinear MMAC controller clearly outper-
forms the nonlinear MRAC with a single ELM (Figure
7).

Figure 11 shows the regulatory performance of the
nonlinear MMAC controller for a series of feed temper-
ature disturbances of random magnitude and duration.
The controller provides excellent disturbance rejection
as the temperature is maintained within 3 K of the
setpoint. The input is well behaved, and the estimator
correctly selects the unstable model throughout the test
(not shown). Figure 12 shows the servo performance of
the nonlinear MMAC controller when the unstable
model is not used. For this test, the tuning is slightly
modified with η1 ) 100 and

As expected, the controller performs very well in the
upper and lower stable operating regions. Despite the
lack of an unstable model, the controller is able to track
setpoint changes in the unstable region. However, the
input is rather oscillatory.

5. Conclusions

We have proposed a nonlinear adaptive control strat-
egy that does not require a detailed dynamic model of
the process to be controlled. The technique is applicable
to single-input, single-output nonlinear systems with
stable zero dynamics and full-state feedback. The
proposed technique is based upon embedding a linear
model within the nonlinear controller to improve the
closed-loop performance during initialization and tran-

Figure 9. Linear MMAC for multiple setpoint changes: W1
(dotted); W2 (solid); W3 (dashed).

Figure 10. Nonlinear MMAC for multiple setpoint changes: W1
(dotted); W2 (solid); W3 (dashed).

Figure 11. Nonlinear MMAC for random feed temperature
disturbances.

K ) [20 0
0 25 ] (36)
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sients. Higher-order controller functions are approxi-
mated with locally supported radial basis functions that
are linearly parametrized. The total number of basis
functions used is determined a priori, and an on-line
pruning algorithm is utilized such that the active
functions are centered near the current operating point.
Parameter update laws that ensure that the plant
output asymptotically tracks the output of a linear
reference model and the state vector remains bounded
are derived via Lyapunov stability analysis. Bayesian
estimation and combination rules are used to embed
multiple linear models within the nonlinear controller.
This yields a novel nonlinear MMAC scheme with the
potential to produce faster transitions between operat-
ing points than is possible with linear MMAC tech-
niques. The proposed strategies provide good servo and
regulatory performances when applied to a nonlinear
chemical reactor model.
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Appendix

Detailed Development of Equation 17. Substitu-
tion of the expansions (16) into the controller (13)
yields

This equation can be simplified using the steady-state
controller relation r*(xj) + â*(xj) uj ) γyjsp. The result is

where

Detailed Development of Equation 23. Substitu-
tion of the expansion (16) into (22) yields

Substitution of the steady-state controller relation,
r*(xj) + â*(xj) uj ) γyjsp, allows this equation to be
simplified as follows:

The approximation relations (19) are utilized to obtain

Substitution of the nonlinear control law (21) into the
final term yields

Higher Relative Degree Systems. We now extend
the MRAC control technique to nonlinear systems of
relative degree 2 and higher. The input/output linear-

Figure 12. Nonlinear MMAC without unstable linear model for
multiple setpoint changes: W1 (dotted); W2 (solid).

(r*(xj) + [∂r*(x)
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∂x2 ]
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2
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∂x2 ]
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(x - xj)2

2
+

...)uj + (â*(xj) + [∂â*(x)
∂x ]xj
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2
+ ...)u′ ) γy′sp + γyjsp
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(x′)2

2
+ [∂3r*(x)

∂x3 ]
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(x′)3
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∂x2 ]
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2
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+ ...)uj
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2
+ ...)

y̆ + γy ) (r*(xj) + [∂r*(x)
∂x ]xj
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y̆ + γy ) [k1x′ + R*T
φ(x′)] + [k2 + â*T

φ(x′)]u′ +

γyjsp + [k2 + âT
φ(x′)]u′ - [k2 + âT

φ(x′)]u′

) k1x′ + r*T
φ(x′) - (âT - â*T)O(x′) u′ + γyjsp +

[k2 + âT
φ(ø′)]u′

y̆ + γy ) k1x′ + R*T
φ(x′) - (âT - â*T)O(x′) u′ + γyjsp -

[k1x′ + rT
φ(x′)] + γy′sp

) -(rT - r*T)O(x′) - (âT - â*T)O(x′) u′ + γysp

) -Ψ1
TO(x′) - Ψ2

TO(x′) u′ + γysp

Ind. Eng. Chem. Res., Vol. 39, No. 8, 2000 3015



izing control law is16,17

where ysp is the setpoint, r is the relative degree, γi are
controller tuning parameters, Lf

ih(x) and LgLf
r-1h(x) are

Lie derivatives, and r*(x) and â*(x) represent the true
controller functions. The appropriate reference model
is

where γi are chosen such that sr + γrsr-1 + ... + γ1 is a
Hurwitz polynomial. It is straightforward to show that
the deviation form of the input/output linearizing control
is (18) where k1 ) -(cAr + γrcAr-1 + ... + γ1c) and k2 )
cAr-1b. The implementable version of the control law
is (21). As in the relative degree 1 case, two assumptions
are needed to rigorously derive the parameter update
laws. The first assumption is k2 + âTO(x) * 0. The second
assumption is the existence of “true” controller param-
eters r* and â* that satisfy (19).

Update laws for the controller parameters r(t) and
â(t) are derived as follows. The rth derivative of the
output can be written as

Following the development of (23), substitution of the
expansions (16) into (37) yields

Substitution of the control law (21) after addition and
subtraction of the term [k2 + âTO(x′)]u′ yields

where Ψ1 and Ψ2 are parameter error vectors defined
previously. The dynamics of the tracking error e ≡ ym
- y are

For the higher relative degree case, the gradient
update laws (25) do not provide Lyapunov stability
because the transfer function

associated with the error dynamics is not strictly
positive real.3 This difficulty is overcome using the
augmented error approach.11 Define the parameter error
Ψ and the regressor Φ as

Now the error dynamics can be written as e ) M(s)
[ΨTΦ)], which represents the filtering of the time
domain signal ΨTΦ by the stable transfer function M(s).
The “true” and estimated values of the controller
parameters are defined as

The augmented error e1 is defined as11

This relation allows e1 to be computed from measurable
signals. In general, e1 * e because the estimated
parameters vary with time. By contrast, the “true”
parameters are constant so θ*TM(s) [Φ] - M(s) [θ*TΦ]
) 0. When this equation is subtracted from (37), an
alternative representation of e1 that is more convenient
for analysis is obtained:

The form of this error equation suggests the following
normalized gradient update law3

where ê ≡ M(s) [Φ] is the filtered regressor. Stability
analysis for higher relative degree systems is consider-
ably more complex than that shown for the relative
degree 1 case because of the augmented error scheme.
The reader is referred to the paper by Sastry and
Isidori11 for the type of detailed analysis required.

Note that the augmented error scheme can lead to
high computational demands because of the introduction
of a large number of filters. The total number of
differential equations required to implement the pa-
rameter estimator is 2r(N + 1) + 2N, where r is the
relative degree and N is the number of basis functions
used. Thus, the method is not well suited for nonlinear
systems with high relative degree and/or that require
a large number of basis functions. Fortunately, many
chemical and biochemical systems have low relative
degree.
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