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Abstract

A nonlinear adaptive control strategy based on radial basis function networks and principal component analysis is presented.
The proposed method is well suited for low dimensional nonlinear systems that are difficult to model and control via conventional
means. The effective system dimension is reduced by applying nonlinear principal component analysis to state variable data
obtained from open-loop tests. This allows the radial basis functions to be placed in a lower dimensional space than the original
state space. The total number of basis functions is specified a priori, and an algorithm which adjusts the location of the basis
function centers to surround the current operating point is presented. The basis function weights are adapted on-line such that
the plant output asymptotically tracks a linear reference model. A highly nonlinear polymerization reactor is used to compare the
nonlinear adaptive controller to a linear state feedback controller that utilizes the same amount of plant information. © 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The application of nonlinear process control tech-
niques is limited by a lack of accurate nonlinear dy-
namic models. Fundamental models can be difficult to
derive due to the lack of fundamental process knowl-
edge and the limited availability of experimental data
for determining unknown parameters. While a variety
of nonlinear system identification techniques have been
proposed, there are many unresolved issues concerning
model structure and data requirements (Pearson &
Ogunnaike, 1997). An alternative to the model-based
controller design approach is to adaptively construct
the nonlinear controller on-line without an explicit
dynamic model. By analogy to the linear case (Sastry &
Bodson, 1989), this is called direct adaptive nonlinear
control. The most popular approach is to adapt the
controller parameters such that the plant output
asymptotically tracks the output of a linear reference
model (Sastry & Isidori, 1989). This is termed nonlinear
model reference adaptive control (MRAC).

We have developed a nonlinear MRAC strategy
based on radial basis function (RBF) networks for
minimum phase nonlinear systems (McLain & Henson,
1997; McLain, Henson & Pottmann, 1999). The only
information required about the plant is the relative
degree, the sign of a Lie derivative which appears in the
associated input–output linearizing control law, and
measurements of the state variables. Unknown con-
troller functions are constructed on-line using RBF
networks such that the plant output tracks the output
of a linear reference model. Potential RBF centers are
placed on a regular grid in the state space, and a
particular basis function is activated only if the closed-
loop system evolves ‘near’ its center. Due to the large
number of adjustable parameters in the RBF networks,
this placement scheme is computationally tractable only
for low-dimensional systems with small operating
regimes.

In this paper, nonlinear principal component analysis
(NPCA) is investigated as a means to extend the non-
linear MRAC strategy to higher dimensional systems.
NPCA is used to reduce the effective system dimension
so that RBF centers can be placed in a lower dimen-
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sional space which reflects the most critical directions of
dynamic operation. Computational efficiency is further
enhanced by fixing the total number of basis functions
and utilizing an algorithm for on-line addition/pruning
of RBF centers. The proposed modifications allow the
MRAC strategy to be applied to nonlinear systems
where the critical dynamic behavior can be represented
in two or (possibly) three dimensions. The nonlinear
MRAC controller is compared to a linear state feed-
back controller using a highly nonlinear polymerization
reactor model.

The remainder of this paper is organized as follows.
In Section 2, the basic nonlinear MRAC strategy is
presented. On-line computational issues associated with
the method are discussed in Section 3. Dimensionality
reduction with NPCA is discussed in Section 3.1. In
Section 3.2, an efficient method for on-line placement
of RBF centers in the reduced dimensional space is
presented. In Section 4, a highly nonlinear polymeriza-
tion reactor model is used to evaluate the proposed
computational enhancements. Finally, a summary and
conclusions are presented in Section 5.

2. Basic nonlinear MRAC strategy

Consider a single-input, single-output nonlinear sys-
tem of the form,

x; = f(x)+g(x)u

y=h(x) (1)

where x is a n dimensional vector of state variables, u is
a scalar manipulated input, y is a scalar controlled
output, and f(x) g(x) and h(x) are nonlinear func-
tions. The MRAC strategy is applicable to nonlinear
systems (1) with the following properties:
1. The system dimension is small (n52). As discussed

in Section 3, the on-line adaptation scheme becomes
intractable for higher dimensional systems.

2. The nonlinear functions f(x) and g(x) are unknown,
while the nonlinear function h(x) is known. This
assumption is reasonable because h(x) is chosen as
part of the control system design.

3. The state vector (x) is measured. This is a restrictive
assumption that will be relaxed in the simulation
study presented in Section 4.

4. The relative degree is well-defined and the zero
dynamics are stable. These restrictions are required
because the controller design procedure is based on
input–output linearization.

5. The sign of a Lie derivative that appears in the
associated input–output linearizing control law is
known. This condition can be viewed as a general-
ization of the high frequency gain condition in

linear adaptive control theory (Sastry & Bodson,
1989).

The goal of this paper is to extend the applicability of
the nonlinear MRAC strategy by relaxing the first
condition. The other conditions remain as standing
assumptions.

The control objective is to make the controlled out-
put (y) asymptotically track the output of a linear
reference model (ym). The following reference model is
appropriate for nonlinear systems of relative degree one
(Isidori, 1989),

y; m= −gym+gr (2)

where r is the setpoint and g\0 is a controller tuning
parameter that determines the speed of response. In this
paper, we focus on the relative degree one case. How-
ever, the following development can be extended to
higher relative degree systems using the filtered regres-
sor approach (Sanner & Slotine, 1992; McLain et al.,
1999). The input–output linearizing control law that
achieves the model matching objective is (Isidori, 1989),

u=
−Lfh(x)−gh(x)+gr

Lgh(x)



−a*(x)+gr
b*(x)

(3)

where Lfh(x) and Lgh(x) are Lie derivatives. Note that
the nonlinear functions f(x), g(x) and h(x) must be
known to construct the Lie derivatives.

The linear approximation of (1) about a steady-state
operating point (x̄, ū, ȳ) can be written as,

x; %=Ax %+bu %

y ’=cx ’ (4)

where: x %, u % and r % are deviation variables; and A, b
and c are state-space matrices of the linear model. The
matrices A, b and c can be obtained via standard linear
system identification techniques (Ljung, 1989). The lin-
ear state feedback controller that provides local model
matching with respect to the reference model (2) is,

u %=
−cAx %−gcx %+gr %

cb



−k1x %+gr %
k2

(5)

where k1and k2 are linear controller gains. As discussed
below, the transient performance of the nonlinear
MRAC controller can be improved by embedding the
linear controller gains within the nonlinear controller
functions.

The nonlinear control law (3) cannot be constructed
if the model functions f(x) and g(x) are unknown. The
most common solution to this problem is to generate
estimates of the unknown model functions via nonlin-
ear system identification (Pearson & Ogunnaike, 1997)
and then use these estimates to construct the nonlinear
controller functions. However, there are a number of
unresolved issues that limit the applicability of nonlin-
ear system identification tecnhiques including:
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1. Selection of an appropriate model structure.
2. Input sequence design for generating plant data.
3. Robust estimation of model parameters from plant

data.
Additional complications appear when radial basis
function (RBF) networks are used to estimate the un-
known functions of a nonlinear state-space model. The
number of estimated functions can be as large as 2n
where n is the dimension of the nonlinear system. This
dimensionality problem hinders the development of in-
direct adaptive control schemes (Polycarpou & Ioan-
nou, 1991; Pottmann & Henson, 1997).

In many chemical process applications, the dynamic
model is developed for controller design rather than to
enhance fundamental process understanding. This ob-
servation motivates the direct approximation of the
unknown controller functions a*(x) and b*(x). As
compared to indirect adaptive control, an important
advantage of the direct approach is that only the non-
linear functions that actually appear in the nonlinear
control law need to be approximated. As discussed
below, a maximum of two controller functions must be
generated for single-input, single-output systems.

The controller functions are approximated by rewrit-
ing the control law (3) as:

a*(x)+b*(x)u=gr (6)

Taylor series expansions of the controller functions and
subsequent simplification yields (McLain & Henson,
1997),

[k1x %+ ã(x %)]+ [k2+b0 (x %)]u %=gr % (7)

where: k1 and k2 are the linear controller gains in (5);
ã(x %) represents second-order and higher terms in a*(x)
and second-order and higher term in b*(x) that are
independent of the input; and b0 (x %) represents first-or-
der and higher terms in b*(x) that depend on the input.
Thus, the input–output linearizing control law (3) has
the following deviation form:

u %=
− [k1x %+ ã(x %)]+gr %

k2+b0 (x %)
(8)

The nonlinear controller design problem is reduced to
approximating the higher-order functions ã(x %) and
b0 (x %). We assume the functions can be represented as,

ã(x %)= %
N

i=1

a i*fi(x %)=a*Tf(x %)

b0 (x ’)= %
N

i=1

b i*fi(x %)=b*Tf(x %) (9)

where: a* and b* are vectors of unknown, constant
parameters; f(x %) is a vector of radial basis functions
(RBFs); and N is the number of basis functions. In
practice, the relations (9) will hold only in an approxi-
mate sense. An implementable control law is obtained

by replacing the unknown controller parameters with
time-varying controller parameters a(t) and b(t),

u %=
− [k1x %+aTf(x %)]+gr %

k2+bTf(x %)
(10)

where we assume k2+bTf(x %)"0 to ensure the con-
trol law remains well defined. Because the sign of b*(x)
is known by assumption, this condition usually can be
satisfied by initializing the controller with b(0)=0.

Update laws for the controller parameters a(t) and
b(t) are derived via Lyapunov stability analysis. It can
be shown that the tracking error e
ym−y has the
dynamics (McLain & Henson, 1997),

e; = −ge+C1
Tf(x %)+C2

Tf(x %)u % (11)

where C1=a−a* and C2=b−b* are parameter er-
ror vectors. This error equation suggests the following
gradient update laws (Sastry & Bodson, 1989),

C: 1=a; = −h1ef(x %)

C: 2=b: = −h2ef(x %)u % (12)

where hi\0 are adjustable gains. It is important to
note that the nonlinear control law (3) does not include
an explicit integral term because the parameter update
laws provide implicit integral action for offset-free
tracking. Closed-loop stability is proven using the Lya-
punov function (McLain et al., 1999):

V=
e2

2
+

1
2h1

C1
TC1+

1
2h2

C2
TC2 (13)

3. Computational enhancements

The key feature of the nonlinear MRAC strategy is
that RBFs centered in the n dimensional state space are
used to generate approximations of the unknown con-
troller functions. In theory, RBFs must be placed
throughout the entire state space since trajectories of
the closed-loop system cannot be predicted a priori.
Clearly this scheme cannot be implemented because the
estimation problem is computationally intractable.

We have addressed this problem by placing potential
locations for RBF centers on a regular grid in the state
space (McLain et al., 1999). A particular RBF is acti-
vated only if the closed-loop system evolves ‘near’ its
center. A disadvantage of this placement scheme is that
a very large number of RBFs may be activated if the
system dimension is large and/or the process operates in
multiple regions (e.g. a polymerization reactor with
different steady-state operating conditions). The addi-
tion of each RBF introduces two adjustable parameters
(ai,bi) and two differential equations for the associated
gradient update laws (12). The total number of differen-
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tial equations is 2N where N is the number of active
basis functions. Real-time application is feasible only
for low-dimensional systems (n52) because the num-
ber of basis functions required to cover the operating
region increases as the power of the system dimension.
It is desirable to minimize the total number of ad-
justable controller parameters to facilitate on-line
implementation.

In this paper, the nonlinear MRAC strategy is ex-
tended to higher dimensional systems by developing
two enhancements of the RBF center placement
scheme. The first enhancement involves the use of
nonlinear principal component analysis (NPCA) to gen-
erate a reduced dimensional space for nonlinear func-
tion approximation. The objective is to decrease the
number of adjustable parameters by placing the RBFs
in the reduced dimensional space. The second enhance-
ment is the development of an efficient addition/prun-
ing algorithm that avoids the computational problems
associated with the continuous addition of RBFs. The
objective is to limit the maximum number of active
basis functions in the reduced dimensional space.

3.1. Dimensionality reduction 6ia NPCA

The objective is to construct a reduced dimensional
space Z that provides a more efficient representation of
the process dynamics than the original state space X.
The first step is to determine a Z space dimension that
yields an acceptable compromise between prediction
accuracy and computational efficiency. The second step
is to determine coordinates for the Z space that mini-
mize the amount of lost information. In practice, these
problems must be solved simultaneously by developing
the required mappings for several dimensions and then
analyzing the results. As discussed below, we use the
sum of squared errors (SSE) between the actual state
variables and the estimated state variables obtained
from the derived mappings as a measure of prediction
accuracy. It is important to emphasize that the nonlin-
ear MRAC stategy is restricted to nonlinear systems
that yield a Z space with a maximum of three dimen-
sions. Otherwise, the on-line estimation problem be-
comes intractable.

Principal component analysis (PCA) is a linear tech-
nique for mapping a multi-dimensional data set into a
lower dimension space while minimizing the loss of
information (Kresta, MacGregor & Marlin, 1991). The
basic idea is to project the original space onto a lower
dimensional linear subspace spanned by the eigenvec-
tors of the covariance matrix corresponding to the
largest eigenvalues. The reader is referred elsewhere
(Mardia, Kent & Bibby, 1980) for a review of linear
PCA.

Several investigators have attempted to extend the
PCA approach to nonlinear mappings. The principal

curves method (Hastie & Stuetzle, 1989) minimizes a
distance property similar to PCA but the linear sub-
space assumption is relaxed. The principal curves
method can produce a projection that is discontinuous.
While this characteristic may be advantageous in a
theoretical setting, it is not desirable when the intended
application is real-time control. More importantly, each
data point only generates an associated score. That is,
the algorithm does not produce an explicit nonlinear
principal component model. Consequently, it is not
possible to develop process estimation and control tech-
niques based on this method (Dong & McAvoy, 1994).

Kramer (1991) has proposed a five-layer, auto-asso-
ciative neural network for nonlinear principal compo-
nent analysis (NPCA). The second and fourth layers
contain sigmoidal nodes, while linear nodes are used in
the other three layers. The networks maps the full
dimensional data into a reduced dimensional space and
then performs an expansion to produce estimates of the
original data. The backpropagation algorithm is used
to train the network to perform the identity mapping.
The trained network provides the necessary mappings
to transform data between the full and reduced dimen-
sional spaces. This method has been shown to represent
data with fewer dimensions and greater accuracy than
PCA (Kramer, 1991).

Tan and Mavrovouniotis (1995) have proposed a
nonlinear dimensionality reduction technique based on
optimization of the neural network inputs. The basic
idea is to reduce the five-layer auto-associative network
to a three layer network by simultaneously optimizing
the network parameters and the network inputs to
reproduce the corresponding output vectors. Unfortu-
nately, input vectors are known only for the output
vectors used for network training. For other data sets,
the input vector must be optimized for each output of
interest while holding the network parameters constant.
Because this method is not amenable to on-line imple-
mentation, we utilize the NPCA method of Kramer
(1991) in this study.

The five-layer NPCA network used for the polymer-
ization reactor example in Section 4 is shown in Fig. 1.
The network maps vectors from the original X space to
the reduced dimensional Z space, and then maps vec-
tors from the Z space to a new space X. that represents
an approximation of the X space. The first layer of the
network simply distributes the x vector to nodes in the
first hidden layer. The third layer produces the z vector
from the outputs of the first hidden layer. The z vector
is distributed to a second hidden layer, and the outputs
from this layer serve as the inputs for the fifth layer
from which the estimated state vector (x̂) is produced.
The network is trained to perform the identity mapping
(Kramer, 1991). The resulting network provides a map-
ping model z=8(x) and a demapping model x̂=j(z).
As discussed below, the modified nonlinear MRAC
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strategy utilizes the mapping model to transform state
measurements from the X space into vectors in the Z
space.

The nonlinear controller is constructed in the reduced
dimensional space Z such that the controlled output
tracks the output of a linear reference model. Selection
of an appropriate reference model is difficult because the
relative degree of the nonlinear system in the Z space is
unknown. The simplest choice is the first-order reference
model (2). More complicated reference models can be
used if appropriate, but the resulting parameter update
laws are more dificult to implement (McLain et al., 1999).

We assume there exists a nonlinear control law that
achieves the model matching objective in the reduced
space Z :

u=
−a*(z)+gr

b*(z)
(14)

This is a reasonable simplifying assumption if the re-
duced space provides a good approximation of the
process dynamics in the original state space. It is impor-
tant to emphasize that this assumption is invoked only
to derive the parameter updates laws. An implementable
version of the nonlinear control law is obtained by
approximating the unknown controller functions using
RBF networks,

u %=
− [k1z %+aTf(z %)]+gr %

k2+bTf(z %)
(15)

where z %, u % and r % are deviation variables; a and b are
vectors of adjustable controller parameters; and k1 and
k2 are linear controller gains chosen to provide local
tracking of the reference model. The linear gains are
computed as in (5) using an empirical linear model
constructed in the Z space:

k1=cA+gc, k2=cb (16)

As discussed in Section 4, the linear model is derived
using the mapping model z=8(x), state variable data
for small amplitude input changes around the nominal
operating point, and standard linear system identification
techniques (Ljung, 1989). By analogy to the full dimen-
sional problem, the appropriate parameter update laws
are,

a; = −h1ef(z %)

b: = −h2ef(z %)u % (17)

where: e
ym−y and h1 and h2 are positive adaptation
gains. It is important to note that the stability arguments
used in the full dimensional problem are not applicable
to reduced dimensional case.

3.2. RBF center placement

The proposed NPCA method facilitates the applica-
tion of the nonlinear MRAC strategy to higher dimen-
sional systems. Even with this computational
enhancement, the RBF center placement scheme utilized
in our previous work (Pottmann & Henson, 1997;
McLain et al., 1999) may cause the parameter estimation
problem to become intractable because the number of
active basis functions grows with time. We address this
problem by fixing the total number (N) of active RBFs
in the network. Potential locations for RBF centers are
placed on a regular grid in the reduced dimensional space
Z. Guidelines for selecting an appropriate mesh size
based on smoothness properties of the approximated
functions are discussed elsewhere (Sanner & Slotine,
1992).

In this paper, we utilize a locally supported RBF of
the form (Pottmann & Henson, 1997),

f(r)=
!(1−r)4(1+4r+3r2+0.75r3) r� [0, 1]

0 elsewhere

r2= %
n

j=1

(xj−xc)2

aj
2 (18)

where n is the state dimension, xc is the basis function
center, and the aj are scaling parameters. The function
is said to have compact support because it is identically
zero outside a compact subset of R. The locally sup-
ported basis function (18) is well suited for adaptive
control applications because only a subset of the func-
tions need to be updated at any particular time. The
scaling parameters are chosen to fix the coverage of a
single RBF. This allows the maximum number of basis
functions (N) that can be active to be determined.

A particular basis function is activated only if the
closed-loop system evolves ‘near’ its center. The total
number of active functions is held constant by pruning
RBFs that are not centered near the current operating
point. New centers are added and old centers are pruned
as the nonlinear system transitions through the reduced
space Z. We have found this algorithm to be simpler and
more effective than RBF center placement techniques
based on recursive clustering (Chen, Billings & Grant,
1992). Another advantage of the proposed scheme is that
the controller parameters can be initialized as a(0)=
b(0)=0 since RBF centers being added and pruned have
small contributions at the current operating point.

4. Simulation study

4.1. Polymerization reactor model

The modified nonlinear MRAC strategy is evaluated
using a four dimensional polymerization reactor model.
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Table 1
Nominal operating conditions

VariableVariable ValueValue

gpDap 6.8465.871×106

Dad 3.6447×1011 gd 6.892
b B1.3 0.3635

x2c1.013×10−7 0W
1.206x1 x2 0.08653

x4x3 1.8650.01424
x2f1.286 0x1f

0.01429x3f x4f 1.865

dx3

dt
=x3f−x3−Dadx3Exd(x2)

dx4

dt
=x4f−x4 (19)

where t is time, x1 is the monomer concentration, x2 is
the reactor temperature, x3 is the initiator concentra-
tion, x4 is the solvent concentration, x1f−x4f are the
corresponding feed concentrations, B is the heat of
reaction, Dap and Dad are Damkohler numbers for
propagation and disassociation, respectively, gp is the
activation energy for propagation, W(x) is the live
polymer concentration, b is the heat transfer coeffi-
cient, and x2c is the cooling jacket temperature. The
solvent feed concentration x4f is a function of x1f and
x3f because the feed stream mass fractions must sum to
unity. The gel effect is included in the calculation of the
live polymer concentration W(x) (Schmidt & Ray,
1981). The reaction rate expressions have the form,

Ex(x2)=exp
� x2

1+ (x2/gp)
n

Exd(x2)=exp
� gdx2

1+ (x2/gp)
n

where gd is the activation energy for disassociation. A
more complete description of the model is presented in
Adebekun and Schork (1989b). The nominal operating
conditions shown in Table 1 correspond to a stable
equilibrium point. The objective is to control the reac-
tor temperature (y=x2) by manipulating the coolant
temperature (u=x2c). In this study, we assume the four
state variables can be measured or inferred from avail-
able on-line measurements.

The process considered is the free-radical poly-
merization of methyl methacrylate in a constant
volume, continuous stirred tank reactor. This example
is chosen for several reasons:
1. The process is sufficiently nonlinear to require non-

linear control (Adebekun & Schork, 1989a).
2. The process is representative of other polymeriza-

tion reactors for which the development accurate
nonlinear models is difficult.

3. The process model satisfies the basic assumptions in
Section 2 with the exception of the system dimen-
sion. As a result, the nonlinear MRAC strategy is
intractable unless the dimension of the state space is
reduced.

The dimensionless model equations are (Adebekun &
Schork, 1989a),

dx1

dt
=x1f−x1−DapW(x)x1Ex(x2)

dx2

dt
=x2f−x2+BDapgpW(x)x1Ex(x2)+b(x2c−x2)

Fig. 1. Neural network for nonlinear principal component analysis.
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Fig. 2. Input sequences for training data set (solid) and validation
data set (dot).

hyperbolic activation functions in the second and fourth
layers. Fig. 2 shows a random sequence of manipulated
input changes used for network training. The resulting
data set consists of 751 points. The network is trained
over 50 epochs using the Levenberg-Marquardt back-
propagation method. The predicted monomer concentra-
tion (x̂1), reactor temperature (x̂2), and initiator
concentration (x̂3) are compared to the actual values in
Fig. 3. There are no discernible differences between the
monomer concentrations and the reactor temperatures,
and only very small differences between the initiator
concentrations. By contrast, PCA produces linear map-
pings that are incapable of accurately predicting the state
variable trajectories. The sum of squared errors (SSE)
between the actual state variables and the estimated state
variables is used as a measure of prediction accuracy. As
shown in Table 2, NPCA yields a very small SSE value
as compared to linear PCA.

A second random input sequence shown in Fig. 2 is
used for validation. Fig. 4 shows the excellent generaliza-
tion properties of the NPCA network. The prediction
accuracy is similar to that obtained with the training data
set. By contrast, linear PCA yields poor predictions for
the validation set. These results demonstrate that NPCA
is able to capture the most important process behavior
by projecting the dynamics into a two-dimensional space.
In general, the nonlinear MRAC strategy is applicable
to systems where the critical dynamic behavior can be
represented in two or (possibly) three dimensions. We
envision that many processes will satisfy this require-
ment.

The linear controller gains k1 and k2 embedded in the
nonlinear controller functions are computed as in (16) by
constructing a linear state-space model in the reduced
space Z. The nominal steady state in the reduced space
Z is computed using the mapping model z̄=8(x̄). This
corresponds to z̄= [1.881 2.052] for the steady state in
Table 1. The input sequence used for linear system
identification consists of a random series of small x2c

changes around the nominal value (Fig. 5). The linear
state-space matrices are estimated from the resulting data
set of 1001 points using the MATLAB system identification
toolbox:

A=
�0.3199 −0.5918

0.8642 −1.2752
n

, b=
�0.0572

0.1466
n

,

c= [−5.5707 6.2331] (20)

In Fig. 5, the predicted reactor temperature generated
from the linear model is compared to the actual value.
The linear model captures the most important dynamic
trends, but it is unable to accurately predict the nonlinear
characteristics. Below we show that this degree of accu-
racy is sufficient for the nonlinear MRAC controller. The
linear controller gains computed from (16) are k1=
[−4.7515 4.6977] and k2=0.5952.

4.2. Two-dimensional nonlinear MRAC controller

The five-layer neural network used for dimensionality
reduction is designed to reduce the four-dimensional
state space X to a two-dimensional space Z (see Fig. 1).
The network consists of four linear nodes in the first and
fifth layer, two linear nodes in the third layer, and 15

Fig. 3. Predictions for training data set: actual (solid); NPCA (dash);
PCA (dot).
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Table 2
SSE for testing data set

Case Training data set

PCA 5688
0.00016Two-dimensional NPCA
8.011One-dimensional NPCA

Fig. 5. Linear system identification: actual (solid); model (dash).

The nonlinear MRAC controller utilizes a maximum
of 24 RBFs placed on a regular grid with spacing of
0.05 dimensionless units in the two-dimensional Z
space. The RBF scaling factors are chosen as a1=a2=
0.2 to ensure that no more than 24 RBFs are active at
any particular time. The controller is tuned with g=
1.5, h1=15 and h2=5. The g value corresponds to a
closed-loop time constant of 0.67 dimensionless time
units.

For the sake of illustration, the nonlinear MRAC
controller is compared to a linear state-feedback con-
troller designed in the Z space using the empirical linear
model. This comparison is meaningful because both
controllers use the same plant information: the linear
process model and measurements of the state variables.
To include an explicit integral term for offset removal,
the linear controller design is based on a second-order
reference model rather than the first-order model (2).

The resulting control law has the form,

u %=
−cAz %+g1(r %−y %)+g0

& t

0

(r %−y %) dt

cb
(21)

where g1=3 and g0=4.5
Fig. 6 shows the performance of the linear controller

for a series of setpoint changes between three steady
states where x2c=0. The controller has difficulty track-
ing the reference signal and produces undesirably large
input moves. This result is attributable to the linear
model used for controller design. Fig. 7 shows the
nonlinear MRAC response for the same series of set-
point changes. The nonlinear controller provides very
good tracking even when the steady state is in the
unstable operating region. The input chattering is a
general characteristic of the nonlinear MRAC con-
troller. The adaptation gains are tuned to provide an
acceptable tradeoff between the chattering and the

Fig. 4. Predictions for validation data set: actual (solid); NPCA
(dash); PCA (dot). Fig. 6. Linear state-feedback controller for setpoint changes.
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Fig. 7. Nonlinear MRAC controller for setpoint changes.

The disturbance rejection performance of the nonlin-
ear MRAC controller for a series of feed temperature
(x2f) changes is shown in Fig. 10. The disturbance
changes from its nominal value to 0.3 at t=2 from 0.3
to −0.3 at t=8 and from −0.3 back to its nominal
value at t=14. The controller provides good regula-
tory performance and reasonable input moves. Fig. 11
shows the nonlinear MRAC controller response for a
sequence of feed temperature disturbances of random
amplitude and duration. The controller provides excel-
lent regulatory performance.

Fig. 9. Nonlinear MRAC controller for random setpoint changes.

Fig. 8. Nonlinear MRAC controller for repeated setpoint changes.

speed of response. Despite this tradeoff, the manipu-
lated input moves are well behaved as compared to the
input moves of the linear controller (Fig. 6).

Fig. 8 shows the performance of the nonlinear
MRAC controller for repeated setpoint changes. Be-
cause the magnitude of the setpoint change is small, the
closed-loop system remains in a small region of the
operating space. The controller is able to learn the
appropriate control moves as there is limited on-line
addition and pruning of RBFs. The tracking perfor-
mance improves and the manipulated input moves be-
come smoother as learning progresses. Learning is less
pronounced when the nonlinear system operates over
large regions in the reduced dimensional state space.
The performance of the nonlinear MRAC controller
for a random setpoint sequence is shown in Fig. 9. The
controller provides excellent tracking, and the input is
reasonably well behaved.

Fig. 10. Nonlinear MRAC controller for unmeasured disturbance
changes.
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Fig. 11. Nonlinear MRAC controller for random unmeasured distur-
bance changes.

prediction accuracy of the NPCA network and the
computational efficiency of the resulting nonlinear
MRAC controller. A five-layer neural network with a
single linear node in the third layer and the same
number of nodes in the other layers is trained over 50
epochs using the random input sequence in Fig. 2. The
prediction accuracy is degraded as compared to the
two-dimensional case.

The linear controller gains k1= −1.8724 and k2=
0.2714 are computed using the nominal operating point
z̄= −0.0651 The nonlinear MRAC controller utilizes
10 RBFs instead of the 24 RBFs used in the two-di-
mensional case. This reduction in the number of RBFs
employed provides a significant enhancement in compu-
tational efficiency. The regular grid for RBF center
placement has a spacing of 0.05 dimensionless units.
The scaling factor is chosen as a=0.25 to ensure that a
maximum of ten RBFs are active at any particular
time. The controller is tuned with g=1.5, h1=25 and
h2=0.2.

Fig. 12 shows the performance of the nonlinear
MRAC controller for the one-dimensional case using
the same setpoint sequence as in Fig. 7. As compared to
the two-dimensional case (Fig. 7), the setpoint tracking
performance is poor and the input moves are quite
oscillatory. The poor performance of the one-dimen-
sional controller is attributable to two factors. First, the
linear model used to construct the nonlinear MRAC
controller is unable to capture the dominant process
dynamics when restricted to a single dimension (not
shown). More importantly, a significant amount of
information is lost when NPCA is used to contruct a
one-dimensional Z space. This example shows the type
of prediction and control results that are obtained when
the dimension of the reduced space is not sufficiently
large.

4.4. Output feedback nonlinear MRAC controller

A fundamental assumption used in the development
of the nonlinear MRAC strategy is that all the state
variables can be measured or estimated from available
measurements. In many applications, only a subset of
the state vector is available for feedback control. The
output feedback problem is investigated for the poly-
merization reactor example to demonstrate possible
extensions of the controller design procedure. We as-
sume the monomer concentration (x1) and reactor tem-
perature (x2) are measured and the initiator
concentration (x3) and solvent concentration (x4) are
unmeasured. It is important to emphasize that nonlin-
ear observer design is not feasible because an explicit
nonlinear model is unavailable. As an alternative, the
nonlinear MRAC controller is constructed directly in
the two-dimensional measured space. This approach
can be interpreted as restricting the 8(x) and j(z)

Fig. 12. One-dimensional nonlinear MRAC controller for setpoint
changes.

4.3. One-dimensional nonlinear MRAC controller

The previous simulation results show the perfor-
mance of the nonlinear MRAC controller when the
state space is reduced from four dimensions to two
dimensions. Now we consider reducing the original
state space X to a one-dimensional space Z. The objec-
tive of this test is to demonstrate the tradeoff between
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Fig. 13. Output feedback nonlinear MRAC controller for setpoint
changes.

specific. We anticipate that nonlinear MRAC with full-
state feedback will yield superior performance in most
applications.

5. Summary and conclusions

A nonlinear model reference adaptive control strat-
egy in which nonlinear principal component analysis is
used to reduce the system dimension has been devel-
oped and evaluated via simulation. The proposed
method utilizes radial basis function (RBF) networks to
approximate unknown functions in the associated in-
put–output linearizing controller. Computational effi-
ciency is enhanced by using nonlinear principal
component analysis to reduce the dimension of the
state space. This modification facilitates on-line con-
struction of the nonlinear controller because basis func-
tions can be placed in a lower dimensional space. A
second computational enhancement is the development
of a novel RBF center placement algorithm that reallo-
cates a fixed number of basis functions to continuously
track the current operating point in the reduced dimen-
sional state space. This modification eliminates compu-
tational problems associated with the number of basis
functions increasing with time. The proposed controller
design method has been evaluated using a four-dimen-
sional polymerization reactor model. The simulation
results demonstrate that the computational enhance-
ments enable the nonlinear model reference adaptive
control strategy to be successfully applied to nonlinear
processes of moderate complexity.
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