Introduction to Plantwide Control

1. Introduction
2. Plantwide control issues
3. Reactor/distillation column plant
4. Alternative control strategies
5. Interaction of process design and control
Introduction

- Plantwide control involves the control of multiple, interacting process units

- Control system design
 - Individual unit operations – SISO/MIMO problems
 - Overall plant – manage interactions between units

- Mass recycle and energy integration
 - Improve process economics
 - Produce more difficult control problems
 - Disturbances more easily propagate between interconnected units
 - Can produce unexpected problems including high sensitivities to disturbances

- Motivates integrated plant design and control
Production Rate Control

(a) Downstream method: Plant production rate established with exit stream flow.

(b) Upstream method: Plant production rate established with inlet stream flow.
Heat Integration

• Increase interactions between columns
• Lose second column reboiler duty as a manipulated variable

• Increase interactions between units
• Introduces positive feedback
• Lose hot oil flow as a manipulated variable
Mass Recycle
Reactor/Distillation Column Plant

- Reaction: A \rightarrow B
- Recycle overhead product concentrated in the more volatile component A back to reactor
- Control objective: control x_B at setpoint despite disturbances in F_0 and z_0
Candidate Control Variables

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0^\dagger</td>
<td>Reactor feed flow rate</td>
</tr>
<tr>
<td>z_0</td>
<td>Reactor feed composition</td>
</tr>
<tr>
<td>H_R</td>
<td>Reactor level (proportional to the holdup)</td>
</tr>
<tr>
<td>F^\dagger</td>
<td>Column feed flow rate (saturated liquid)</td>
</tr>
<tr>
<td>z</td>
<td>Column feed composition</td>
</tr>
<tr>
<td>H_D</td>
<td>Distillate reflux drum level</td>
</tr>
<tr>
<td>R^\dagger</td>
<td>Relex flow rate</td>
</tr>
<tr>
<td>D^\dagger</td>
<td>Distillate (recycle) flow rate</td>
</tr>
<tr>
<td>H_B</td>
<td>Bottoms level</td>
</tr>
<tr>
<td>B^\dagger</td>
<td>Bottoms (product) flow rate</td>
</tr>
<tr>
<td>V^\dagger</td>
<td>Reboiler (column) vapor flow rate</td>
</tr>
<tr>
<td>x_D</td>
<td>Distillate composition</td>
</tr>
<tr>
<td>x_B</td>
<td>Bottoms (product) composition</td>
</tr>
</tbody>
</table>

† Denotes a stream flow rate that can be measured and adjusted by a control valve.

- **Column controlled outputs:** H_D, H_B, x_D, x_B
- **Column manipulated inputs:** D, B, R, V
- **Disturbances:** F_0, z_0
- **Remaining variables:** H_R, F, z
Alternative 1: H_R is controlled by manipulating F.

Control Design Alternative 1
The Snowball Effect

- Steady-state mass balances for constant H_R

 Column
 \[F = D + B \]
 \[F\bar{z} = D\bar{x}_D + B\bar{x}_B \]

 Plant
 \[F_0 = B \]
 \[F_0\bar{z}_0 = B\bar{x}_B + k_R H_R \bar{z} \]

- Limiting case: $x_D \approx 1 \quad x_B \approx 0$

- Steady-state distillate flow:
 \[D = \frac{(F_0)^2\bar{z}_0}{k_R H_R - F_0^2\bar{z}_0} \]

- Distillate flow rate very sensitive to small changes in fresh feed conditions
Control Design Alternative 2

- **Steady-state mass balances for constant** F

\[
\bar{D} = \bar{F} - \bar{F}_0 \quad \bar{H}_R = \frac{\bar{z}_0}{k_R \left(\frac{1}{\bar{F}_0} - \frac{1}{\bar{F}} \right)}
\]
Control Design Alternative 3

- H_R is controlled by manipulating D
- z is controlled by manipulating the set point of the H_R controller
- F/F_0 is maintained constant by means of a ratio controller
Control Design Alternative 4

- H_R is controlled by manipulating D
- x_D is controlled by manipulating the set point of the H_R controller
- F/F_0 is maintained constant by means of a ratio controller
Comparison of Control Strategies

<table>
<thead>
<tr>
<th>Loop Number</th>
<th>Controller Type</th>
<th>Purpose of Control Loop</th>
<th>Controlled Variable</th>
<th>Manipulated Variable Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Feedback</td>
<td>Reactor holdup</td>
<td>H_R</td>
<td>1, Floating, 2, $D^$, 3, $D^$</td>
</tr>
<tr>
<td>2</td>
<td>Feedback</td>
<td>Distillate holdup</td>
<td>H_D</td>
<td>2, D, 3, R, 4, R</td>
</tr>
<tr>
<td>3</td>
<td>Feedback</td>
<td>Bottoms holdup</td>
<td>H_B</td>
<td>3, B, 4, B, 4, B</td>
</tr>
<tr>
<td>4</td>
<td>Feedback</td>
<td>Bottoms composition</td>
<td>x_B</td>
<td>4, V, 4, V, 4, V</td>
</tr>
<tr>
<td>5a</td>
<td>Feedback</td>
<td>Distillate composition</td>
<td>x_D</td>
<td>5a, R, 5a, R</td>
</tr>
<tr>
<td>5b</td>
<td>Cascade**</td>
<td>Reactor composition</td>
<td>z</td>
<td>5b, $H_{R,sp}$ (Loop 1)</td>
</tr>
<tr>
<td>5c</td>
<td>Cascade**</td>
<td>Distillate composition</td>
<td>x_D</td>
<td>5c, $H_{R,sp}$ (Loop 1)</td>
</tr>
<tr>
<td>6</td>
<td>Feedback</td>
<td>Dist. column feed rate</td>
<td>F</td>
<td>6, F^\dagger, 6, F^\dagger</td>
</tr>
<tr>
<td>7</td>
<td>Ratio</td>
<td>Dist. column feed rate</td>
<td>F</td>
<td>7, F set point (Loop 6), 7, F set point (Loop 6)</td>
</tr>
</tbody>
</table>

†Denotes a flow stream adjusted by a flow controller

*Variable controlled in secondary loop of cascade controller (Alternatives 3 and 4 only)

**Primary loop of cascade controller (Alternatives 3 and 4 only)

Alternative Pairings and Relative Gain (λ)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Pairings</th>
<th>Relative Gain (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_D-R/x_B-V</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>x_D-R/x_B-V</td>
<td>12.2</td>
</tr>
<tr>
<td>3</td>
<td>$z-H_{R,sp}/x_B-V$</td>
<td>0.78</td>
</tr>
<tr>
<td>4</td>
<td>$x_D-H_{R,sp}/x_B-V$</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Dynamic Responses for Feed Changes

Fresh feed flow rate (-10%)

Fresh feed composition (-10%)

Dynamic Responses for Feed Changes

Fresh feed flow rate (-10%)

Fresh feed composition (-10%)

Dynamic Responses for Feed Changes

Fresh feed flow rate (-10%)

Fresh feed composition (-10%)

Dynamic Responses for Feed Changes

Fresh feed flow rate (-10%)

Fresh feed composition (-10%)

Process Design and Control

- **Traditional engineering practice**
 - Design plant based on steady-state considerations
 - Develop control system based on predetermined process design
 - Process design can be dynamically inoperable due to mass recycle and heat integration

- **Integrated process design and control**
 - Dynamic operability considered during process design stage
 - Need to compensate for lost degrees of freedom due to mass recycle and heat integration
 - Especially important for plant startup/shutdown where extra degrees of freedom are used