Computational Molecular Science and Engineering Forum


ChE academic research groups

  • U. Akron: Phase equilibrium and supercritical fluids (Elliott)
  • U. Alabama: Molecular dynamics of polymeric fluids (Wiest)
  • U. Alberta: Molecular modeling of polymers (Choi)
  • U. Arizona: Kinetics (Blowers)
  • Brigham Young U.: Simulation and measurement of thermophysical properties (Rowley)
  • U Buffalo (SUNY-Buffalo): Molecular simulations (Kofke), computational quantum chemistry for chemical kinetics (Swihart), and biologically interesting macromolecules (Zhou)
  • U.C. Berkeley: Reactions and transport in catalysts (Bell)
  • UCLA: Reaction modeling (Senkan)
  • U.C. Santa Barbara: Modeling of organic crystal structure and habit (Doherty)
  • Caltech (ChE): Molecular simulations (Wang), computational chemistry and systems modeling (Seinfeld), Materials and Process Simulation Center (Goddard)
  • Carnegie-Mellon: Nanostructured and microporous materials (Sholl)
  • Case Western Reserve University: Molecular simulations of materials (Lacks)
  • Cleveland State University: Molecular simulation of adsorption (Talu)
  • Colorado School of Mines: Reaction modeling (Dean and McKinnon), molecular and materials simulation (Ely, Marr, Way, Wu)
  • Colorado State U.: Molecular dynamics (Lenz)
  • U. Cincinnati: Center for Computer-Aided Molecular Design (Fried)
  • Cornell U.: Molecular simulations of materials interfaces (Clancy) and of macromolecular systems (Escobedo)
  • U. Delaware: Phase equilibrium (Sandler), mesoscale and continuum modeling (Vlachos), statistical mechanics and parallel simulation of complex fluids and polymer membranes (Wagner), and group computational facility
  • T.U. Delft, Dept of Chemical Technology, Physical Chemistry and Molecular Thermodynamics: Catalysis (Coppens), molecular simulation of complex liquids and solids (de Leeuw)
  • Drexel U.: Multiscale polymer and protein simulations (Abrams)
  • U. Florida: Thermodynamics and materials (Anderson), design of materials (Asthagiri), heterogeneous catalysis (Hagelin-Weaver), surface reactivity (Weaver)
  • Georgia Tech: Molecular modeling of polymers (Ludovice), of self-assembly (Meredith), and of deposition (Gallivan)
  • U. Guelph: Molecular simulation and macroscopic modeling of chemical reaction and phase equilibria in bulk and confined systems (Smith)
  • U. Illinois Champaign-Urbana: Catalysis (Masel)
  • U. Illinois Chicago: Molecular simulations (Murad)
  • Iowa State: Molecular simulations of advanced materials (Lamm)
  • U. Massachusetts: Adsorption, diffusion, and reactivity in microporous and mesoporous materials (Auerbach), Monte Carlo molecular simulations of films and solids (Monson), thermochemistry and kinetics by ab initio quantum theories (Westmoreland), modeling of electronic and structural materials (Maroudas); Molecular simulations (Ford)
  • U. Michigan: Supercritical and high-temperature water (Savage) and polymers (Glotzer); Porous materials (Lastoskie)
  • U. Minnesota: Reaction theory (Carr), colloid modeling (Davis), nonequilibrium statistical mechanics and collision theory (Dahler), ceramic and sol-gel structures (McCormick), ab initio molecular dynamics (Wentzcovitch); force-field development and phase equilibria (Siepmann); Minnesota Supercomputer Institute;
  • MIT: Thermodynamics, statistical mechanics, and molecular simulation and catalysis and chemical kinetics (Green, Jensen, Rutledge, Trout), polymer and biomolecular modeling (Chakraborty)
  • New Jersey Institute of Technology: Engineering properties from ab initio calculations (Knox)
  • New Mexico State U.: Molecular simulations of zeolites and VLE (Mitchell)
  • N.C. State U.: Molecular simulations of nano-dimensional fluids and solids (Gubbins) and of polymers and proteins (Hall), surface chemistry (Parsons)
  • Northwestern U.: Molecular simulations in zeolites and catalysis (Snurr) and molecular modeling for reaction pathways (Broadbelt)
  • Notre Dame: Molecular simulations and materials (Maginn)
  • Penn State: Polymers near and at interfaces (Kumar), molecular simulations of surface phenomena (Fichthorn), polymers and blends (J. Maranas), optimization methods for protein folding (C. Maranas)
  • U. Pennsylvania: Molecular thermodynamics (Glandt), Modeling of crystalline solids (Sinno)
  • U. Pittsburgh: Molecular simulations for physisorption and phase equilibria (Johnson) and polymer modeling (Balazs)
  • Princeton U.: Molecular simulations (Debenedetti), quantum reaction theory (Kostin), fluids and polymeric materials (Panagiotopoulos)
  • Purdue U.: Computational catalysis and materials (Thomson) and metastable liquids (Corti)
  • Rice U.: Associating and polymeric fluids (Chapman); biomolecule modeling (Deem)
  • Rutgers U.: Surfactants and interfaces (Tomassone)
  • Stanford: Microelectronics (Musgrave)
  • U. Tennessee Knoxville: Molecular simulation of adsorption (Keffer)
  • Texas A&M U.: Molecular simulations (Balbuena)
  • U. Texas: Polymeric materials (Sanchez); microelectronics (Hwang); electronic structure of solids (Chelikowsky),
  • U. Utah: Kinetics (Truong, Chemistry Department)
  • Vanderbilt U.: Molecular simulations (Cummings, McCabe)
  • U. Virginia: Catalysis by ab initio density functional techniques (Neurock), molecular thermodynamics and surfactants (O'Connell)
  • U. Wisconsin: Molecular simulations (de Pablo), kinetics and catalysis (Mavrikakis)
  • Washington U.: Materials processing (Khomami), Nanoscale molecular simulation (Gelb)
  • U. Washington: Interfacial phenomena and nanotechnology (Jiang)
  • Wayne State University: Force-field development and molecular simulation of thin-film phase behavior and azeotropes (Potoff)
  • Worcester Polytechnic Institute: Environmental quantum chemistry (Wilcox)
  • Yale U.: Biomolecule conformations (Van Tassel)

Go to CoMSEF's home page,
Find resources on:
 Journals and technical reports

 On-line courses and texts
 Commercial and free software
 Job opportunities
 Other useful sites
Go to AIChE's home page.
Last update: June 6, 2007.
Contact for corrections or inquiries.