

able 1. He	enry's Law Const	ants (K _R) at Diffe	erent Temperatu	res in the Rang	e between (4 an	d 31) °C ^{a,b} (K _H /Pa·m ³ ·mol ⁻¹)				
ongener	4 °C	11 °C	18 °C	25 °C	31 °C	lit. 25 °C				
1	5.13 ± 0.15	8.32 ± 0.18	13.17 ± 0.25	20.43 ± 0.52	29.3 ± 1.1	28.9. ^d 30.2 ^e				
8	6.010 ± 0.086	9.87 ± 0.10	15.85 ± 0.14	24.89 ± 0.29	36.07 ± 0.60	20.3, ¹ 24.9, ^d 30.7 ^e				
18	8.11 ± 0.14	12.07 ± 0.15	17.64 ± 0.18	25.35 ± 0.34	34.14 ± 0.65	58.1,d 25.3,h 38.5,8 32.0e				
28	13.13 ± 0.15	19.06 ± 0.15	27.18 ± 0.19	38.14 ± 0.37	50.39 ± 0.71	22.8, d 32.0, g 29.0, e 20.3h				
29	12.12 ± 0.19	18.04 ± 0.21	26.37 ± 0.27	37.89 ± 0.53	51.03 ± 1.0	25.3,d 30.0,e 20.3h				
44	11.86 ± 0.14	16.02 ± 0.13	21.33 ± 0.15	28.05 ± 0.27	35.13 ± 0.48	24.3,132.8,d 23.3e				
50	28.86 ± 0.72	38.18 ± 0.67	49.84 ± 0.78	64.3 ± 1.4	79.3 ± 2.4	138, ^d 61.8 ^e				
52	11.34 ± 0.19	16.13 ± 0.19	22.56 ± 0.23	31.07 ± 0.42	40.43 ± 0.77	22.3,1 53.2,d 34.7,8 32.3e				
66	14.17 ± 0.22	19.80 ± 0.22	27.25 ± 0.26	36.97 ± 0.48	47.51 ± 0.87	84.2, ¹ 13.7, ^d 20.5 ^e				
77	4.46 ± 0.14	6.99 ± 0.16	10.75 ± 0.21	16.20 ± 0.41	22.69 ± 0.81	4.37, d 9.52, g 10.4e				
87	12.97 ± 0.29	18.83 ± 0.30	26.86 ± 0.37	37.71 ± 0.69	49.8 ± 1.3	33.4, ¹ 19.9, ^d 18.6 ^e				
101	15.75 ± 0.31	22.20 ± 0.31	30.78 ± 0.34	42.07 ± 0.70	54.4 ± 1.3	32.7, d 25.4, 8 24.9, e 9.1h				
104	39.4 ± 1.0	47.17 ± 0.88	56.00 ± 0.88	66.0 ± 1.4	75.5 ± 2.1	185, ^d 90.9, ^g 75.1 ^e				
105	3.09 ± 0.12	7.10 ± 0.22	15.73 ± 0.44	33.6 ± 1.3	62.5 ± 3.9	10.1, ^e 5.68 ^d				
118	7.34 ± 0.23	12.81 ± 0.30	21.79 ± 0.44	36.2 ± 1.0	54.8 ± 2.3	40.5, ^f 12.7, ^e 9.35 ^d				
126	0.958 ± 0.038	2.82 ± 0.087	7.88 ± 0.22	21.02 ± 0.83	47.0 ± 3.0	8.29, * 2.78 ^d				
128	0.890 ± 0.031	3.224 ± 0.091	10.99 ± 0.30	35.4 ± 1.5	92.3 ± 6.6	50.7, ¹ 6.85, ^d 1.3, ^h 3.04, ^g 10.5				
138	2.88 ± 0.11	7.50 ± 0.22	18.68 ± 0.49	44.6 ± 1.7	91.1 ± 5.6	48.6, ^f 11.0, ^d 13.2, ^e 2.1 ^h				
153	6.50 ± 0.19	13.52 ± 0.31	27.2 ± 0.58	52.8 ± 1.6	91.2 ± 4.3	35.5, ^f 17.9, ^d 2.3, ^h 13.4, ^g 16.7				
154	17.34 ± 0.50	29.18 ± 0.63	47.85 ± 0.96	76.7 ± 2.2	113.1 ± 4.8	72.1, e 58.5 ^d				
170	0.128 ± 0.004	0.760 ± 0.018	4.139 ± 0.096	20.84 ± 0.80	78.5 ± 5.5	19.3, ^d 8.85, ^e 0.91 ^h				
180	0.425 ± 0.012	2.025 ± 0.046	8.96 ± 0.20	37.0 ± 1.3	118.5 ± 7.8	30.4, ^d 10.9, ^e 1.01 ^h				
187	3.034 ± 0.099	8.72 ± 0.23	23.84 ± 0.57	62.2 ± 2.2	136.7 ± 8.2	42.2, ^d 20.5 ^e				
188	15.77 ± 0.47	31.39 ± 0.74	60.5 ± 1.4	113.1 ± 4.0	188.6 ± 10.4	44.9,*113d				
195	0.079 ± 0.003	0.485 ± 0.015	2.724 ± 0.088	14.13 ± 0.78	54.5 ± 5.5	12.0, e 12.8, d 1.1h				
201	1.069 ± 0.032	5.14 ± 0.13	22.98 ± 0.59	95.8 ± 4.4	308 ± 29	13.2, e 64.5, d 1.7h				

Г

Conclusions on PCB fate

The environmental fate and transport of PCBs is largely governed by their physical-chemical characteristics, properties which vary considerable across the spectrum of species included in this family of chemicals. Chief among these properties are the octanol-water partition coefficient, a measure of the potential to associate with particles, and the Henry's Law constant, a reflection of the partitioning of the chemical between air and water. In general, high MW PCBs are strongly associated with particles and low MW PCBs are more strongly partitioned to the atmosphere.

As a result, fish consumption advisories are common in Michigan and other states.

One meal per month. Six mea		meal per week. neals per year. ot eat these fish.	General Population Length (inches)								Women & Children Length (inches)										
Water body	Species	Contaminant(s)	8-9	8-10	10-12	12-14	14-18	18-22	22-26	26-30	30 +		8-9	8-10	10-12	12-14	14-18	18-22	22-26	26-30	30 +
Detroit River	Carp	PCBs, Dioxin	•		•							ľ	•	٠	٠	٠	٠				•
	Freshwater Drum	Mercury, PCBs		▲		▲		▼	▼		▼	Π	•	•	•	•	•	•	•	•	◙
	Northern Pike	PCBs	Τ	Γ		Γ		Γ	▲		▲	Π							•	•	I
	Redhorse Sucker	PCBs					▲		۸			Π	•	•	٠	•					Г
	Walleye	PCBs	Т	Γ					▲		▲	Π				•	•	•	•	•	I
	Yellow Perch	PCBs	(A)	4	1	4	A	re	#36	5		Ħ	▼	▼	▼	▼	▼			Γ	Г

