## **CEE 697z**

# Organic Compounds in Water and Wastewater

Cyanotoxins

WQ Modeling & Degradation in Lakes

Lecture #32

# Australian Study

WATER RESEARCH 46 (2012) 5735-5746



Available online at www.sciencedirect.com

#### SciVerse ScienceDirect



journal homepage: www.elsevier.com/locate/watres

# Determination of rate constants and half-lives for the simultaneous biodegradation of several cyanobacterial metabolites in Australian source waters

Lionel Ho a,b,\*, Tim Tang a, Daniel Hoefel a,b, Bala Vigneswaran c



a South Australian Water Corporation, Australian Water Quality Centre, 250 Victoria Square, Adelaide, SA 5000, Australia

<sup>&</sup>lt;sup>b</sup>School of Earth & Environmental Sciences, University of Adelaide, SA 5005, Australia

c Sydney Catchment Authority, Level 4, 2-6 Station Street, Penrith, NSW 2750, Australia

# Lake Burragorang

- Microcystin (MCLR)
- Cylindrospermopsin (CYN)
- Saxitoxin (STX)

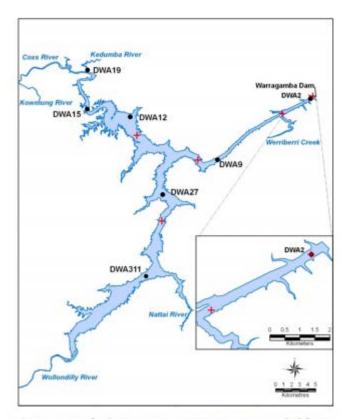
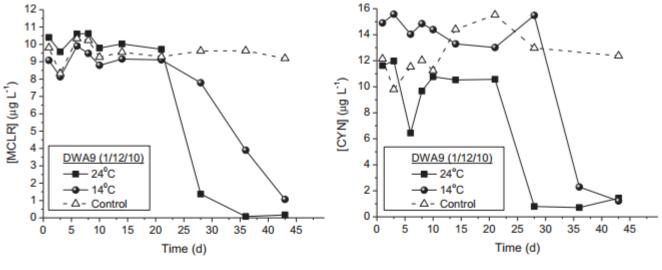




Fig. 1 – Map of Lake Burragorang. Water was sampled from DWA2 (dam wall) and DWA9 for the laboratory experiments.

## Lab Tests



Controls were autoclaved

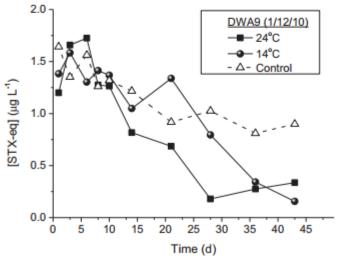



Fig. 2 – Examples of cyanobacterial metabolite biodegradation in water sampled from Lake Burragorang at location DWA9 during summer.

## **Inoculated Tests**

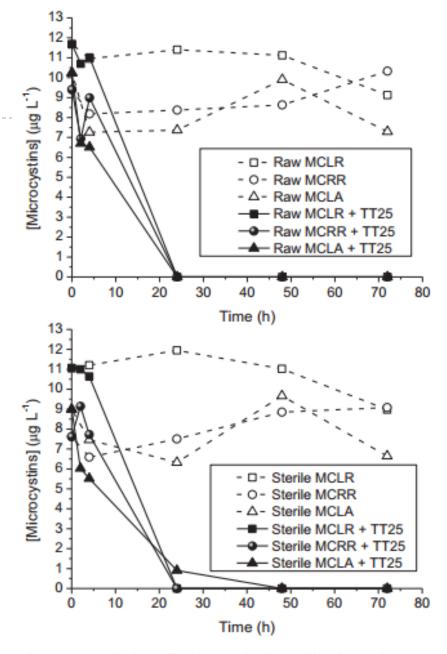



Fig. 4 – Inoculation of microcystin-degrading bacterium,

CEE ( TT25, into raw and sterile DWA2 water spiked with MCLR,

MCRR and MCLA.



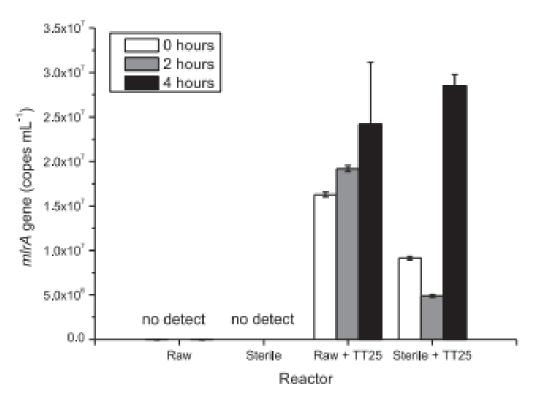



Fig. 5 — Abundance of mlrA gene during the inoculation of microcystin-degrading bacterium, TT25, into raw and sterile DWA2 water spiked with MCLR, MCRR and MCLA. Error bars represent 95% confidence intervals from duplicate measurements.

# Ontario Lake Study

- The study site is a small ( $\sim$ 13.2 ha) and shallow (depth: mean 2.4 m, max 4.5 m)
- privately owned lake, south of the City of Ottawa, Canada
- The lake is polymictic and has 4–5 months of ice cover.
- The site was originally a stone quarry, has no inflow or outflow channel, and the principal water input and output are precipitation and avapotranspiration.
- The water residence time was estimated to be approximately 1.8 years using precipitation and evapotranspiration rates obtained from the National Climate Data and Information Archive and The Hydrological Atlas of Canada. The sediments are composed of gravel and sand with little organic matter accumulation

Human and Ecological Risk Assessment, 20: 1670–1686, 2014

Copyright © Taylor & Francis Group, LLC ISSN: 1080-7039 print / 1549-7860 online DOI: 10.1080/10807039.2013.854138

### Fate and Persistence of Particulate and Dissolved Microcystin-LA from *Microcystis* Blooms

#### A. Zastepa, F. R. Pick, and J. M. Blais

Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada

#### ABSTRACT

Few studies have estimated fate and persistence of the hepatotoxic microcystins (MCs) in situ, making ecological and human health risk assessments challenging. We determined fate and persistence of MC congeners during 2 years of Microcystis blooms in a small, shallow, closed-basin lake in Ontario, Canada. In situ half-lives were compared to estimates obtained in vitro under controlled temperature and light. The blooms produced elevated microcystin-LA (MC-LA) (maximum ~4.2 mg L-1) with minor concentrations of MC-LR, -RR, and -YR. Dissolved MC-LA declined more slowly and persisted longer than particulate MC-LA with in situ half-lives (total 1.5-8.5 days) shorter than in vitro (total 6.8-60.0 days). Half-lives in 2010 were two to eight times shorter compared to 2009, likely due to differences in bloom phenology and species/strain composition. In vitro, higher temperature ( $4^{\circ}C \rightarrow 25^{\circ}C$  in dark), and irradiance (dark  $\rightarrow$  45  $\rightarrow$  260  $\mu$ E m<sup>-2</sup>s<sup>-1</sup> at 25°C) accelerated particulate and dissolved MC-LA decline, respectively. MC-RR accumulated in surface sediments while MC-LA was near detection despite elevated surface water concentrations. MC-LA appears to persist longer in surface waters than the equally toxic MC-LR, requiring almost the entire recreational season (9.5 weeks) to reach guideline concentrations (20 μg L<sup>-1</sup>).



# MC Congeners

Table 1. Comparison of the properties of microcystin congeners.

|                                   | MC-LA        | MC-LR                                                        | MC-YR    | MC-RR    |  |
|-----------------------------------|--------------|--------------------------------------------------------------|----------|----------|--|
| Toxicity (LD <sub>50</sub> μg/kg) | 50           | 50                                                           | 70       | 600      |  |
| Net charge (pH 7)                 | -2           | -1                                                           | -1       | 0        |  |
| Molecular weight                  | 909          | 994                                                          | 1044     | 1037     |  |
| Amino acid substituents           | Leu, Ala     | Leu, Arg                                                     | Tyr, Arg | Arg, Arg |  |
| Hydrophobicity                    | Decreasing - | Decreasing $\rightarrow \rightarrow \rightarrow \rightarrow$ |          |          |  |

Adapted from Newcombe et al. (2003).



#### Fate and Persistence of Microcystin-LA

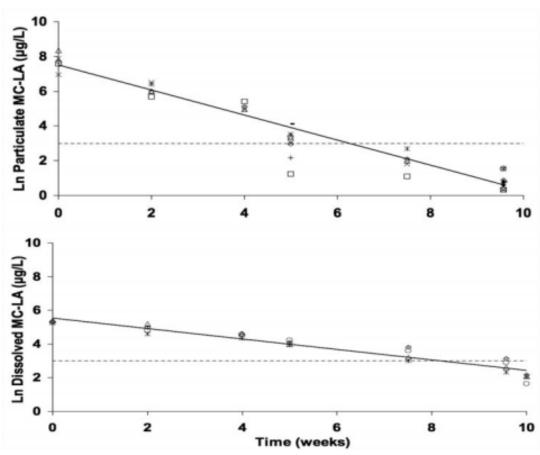



Figure 1. In situ (whole lake) decline of particulate (cell-bound) (R² = 0.98, p < .001) and dissolved (extracellular) (R² = 0.97, p < .001) MC-LA (μg L⁻¹). Each symbol represents a different station of the lake sampled through time in 2009. Dashed horizontal line denotes recreational guideline of 20 μg L⁻¹, which corresponds to a moderate probability of adverse health effects during recreational exposure (WHO 2006; Chorus and Bartram 1999; Codd et al. 2005).</p>

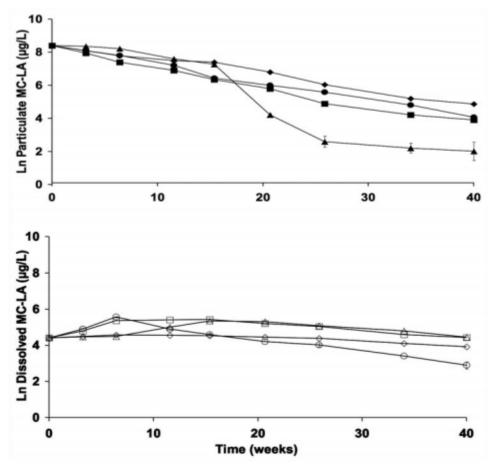



Figure 2. The decline of particulate (cell-bound; filled symbols) and dissolved (extracellular; open symbols) MC-LA (μg L<sup>-1</sup>) under in vitro conditions of 4°C dark (diamonds), 25°C dark (triangles), 25°C low light (squares), and 25°C high light (circles). Duplicate incubations were carried out using bloom material collected in 2009.

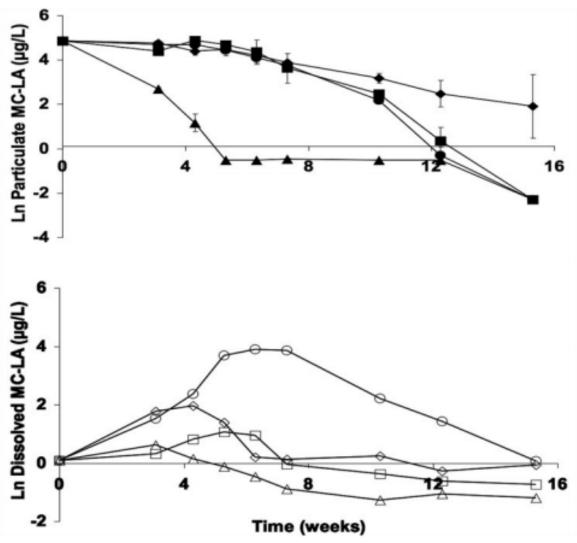



Figure 3. Decline of particulate (cell-bound; filled symbols) and dissolved (extracellular; open symbols) MC-LA (μg L<sup>-1</sup>) under in vitro conditions of 4°C dark (diamonds), 25°C dark (triangles), 25°C low light (squares), and 25°C high light (circles). Duplicate incubations were carried out using bloom material collected in 2010.

### Half lives in the 2 blooms

Table 2. Estimates of MC-LA half-life based on the May 2009 Microcystis bloom (±SD).

| Conditions                                     | Half life of microcystin-LA (days) |                  |                |
|------------------------------------------------|------------------------------------|------------------|----------------|
|                                                | Particulate                        | Dissolved        | Total          |
| In situ (n = 5)                                | $6.5 \pm 0.4$                      | $15.8 \pm 1.0$   | $8.5 \pm 0.5$  |
| In vitro $(n = 2)$                             |                                    |                  |                |
| 25°C (260 μE m <sup>-2</sup> s <sup>-1</sup> ) | $44.9 \pm 0.7$                     | $63.5 \pm 5.3$   | $47.4 \pm 1.0$ |
| 25°C (45 μE m <sup>-2</sup> s <sup>-1</sup> )  | $42.8 \pm 0.7$                     | $120.4 \pm 1.0$  | $55.6 \pm 0.7$ |
| 25°C (Dark)                                    | $23.8 \pm 2.4$                     | $131.5 \pm 7.5$  | $41.6 \pm 0.2$ |
| 4°C (Dark)                                     | $54.6 \pm 0.5$                     | $251.0 \pm 35.9$ | $60.0 \pm 0.1$ |

**Table 3.** Estimates of MC-LA half-life based on the August 2010 *Microcystis* bloom (±SD).

| Conditions                                     | Half life of microcystin-LA (days) |                |                |
|------------------------------------------------|------------------------------------|----------------|----------------|
|                                                | Particulate                        | Dissolved      | Total          |
| In situ (n = 5)                                | $1.5 \pm 0.03$                     | $2.8 \pm 0.3$  | $1.5 \pm 0.1$  |
| In vitro $(n = 2)$                             |                                    |                |                |
| 25°C (260 μE m <sup>-2</sup> s <sup>-1</sup> ) | $9.2 \pm 0.7$                      | $10.9 \pm 0.3$ | $11.6 \pm 0.3$ |
| 25°C (45 μE m <sup>-2</sup> s <sup>-1</sup> )  | $10.5 \pm 0.9$                     | $26.5 \pm 0.9$ | $9.4 \pm 1.0$  |
| 25°C (Dark)                                    | $5.0 \pm 0.1$                      | $33.8 \pm 2.2$ | $6.8 \pm 0.04$ |
| 4°C (Dark)                                     | $24.2 \pm 1.3$                     | $31.3 \pm 1.8$ | $25.7 \pm 4.2$ |

▶ To next lecture