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Cyanobacteria are Ubiquitous
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Ecology: Adaptations

Gas-filled cavities allow cyanobacteria to float to the
surface or within the water column based on light
conditions and nutrient levels
E.g. Anabaena flos-aquae
Leads to concentration of cyanobacteria on surface (creation
99 vy Symbiosis
of ”scum '
__ Hormogonia
Nitrogen fixation '
Ability to resume
Heterocyst
photosynthesis after periods ... P ¥ < Rificgen
of light exclusion and N2
dehydration
Akinetes
Energy-limiting conditions
Flores & Herrero, 2010 CEE 6972 - Lecture #31
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What is a “bloom”?

» “a significant production of biomass over a short period
of time correlated with a diminution of phytoplankton
diversity”

» Often appears as a dense layer of cells at the surface of
the water

» May also be

dispersed through the water column with no surface “scum”
located in the sediments (benthic)

» Diversity of genera often low

» Primarily occur in lentic surface waters
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Ecology: Bloom Impacts

» Toxic effects

Humans, dogs, livestock, fish, birds...

» Oxygen levels
Elevated during the day due to photosynthesis

Drop due to
Nightly respiration
Bloom decay

Hypoxic conditions may result in plant and animal die-off
» Water temperature elevation

» Food web disruption
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Monitoring for CyanoHABSs in
Massachusetts

» Health risk rises with cell counts

With some uncertainties

» Measures on which action can be taken:
Observation of visible scum or mat layer

Total cell count of cyanobacteria (total cells/mL of water)
Threshold = 70,000 cells/mL water

Concentration of cyanotoxin

Threshold = 14 ug microcystin/L water
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Actions taken in Massachusetts

» State actions
Post advisories against contact with water

Advisories may be lifted after two consecutive and
representative sampling rounds one week apart demonstrate
cell counts and toxin levels below those at which an advisory

would be posted.

» City/T
tyrIown Acaunon

Rope off water body and/or close bathhouses

Bloom treatment

Algae Information

Cyanobacteria Advisories in Massachusetts Current as of October 30, 2014

» Congamond Lake - Southwick

+ Lake Wampatuck - Hanson u D Purt e hbm < oHMSH AP B8 BUP 1 TS R A ERsLAE]
Far furter imfosmation il MOPH af 897,800 5757 po vt
|_baaith

» West Monponsett Pond - Halifax, Hanson

http://www.mass.gov/eoh hs/gov/departments/dph/programs/e@'Egnegf'yliab@_@&{_@ép#gqre-topics/beaches-algae/algae-
information.html



http://www.mass.gov/eohhs/gov/departments/dph/programs/environmental-health/exposure-topics/beaches-algae/algae-information.html
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Factors Affecting Bloom Formation
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Eutrophication
» CyanoHAB:s are stimulated by
excess nutrient loading

» P is often the limiting nutrient
for in freshwater

» N is limiting in estuaries and
marine systems

» Evidence exists for co-limitation
by N &P
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Fig. 6 — Phytoplankton biomass (chlorophyll a) responses
in bioassays conducted in May, July, October, and
December 2008 and May, July and October 2009. Water
samples for bioassays were collected from the surface at
the Inner Bay location in Meiliang Bay. Initial chlorophyll
a content is shown. Responses were for 3-day incubations
in spring, summer, and fall, 6-day incubations in winter
2008, and 2-day incubations in spring, summer, and fall
2009. Mean values are shown. Error bars represent +15D of
triplicate samples. Differences between treatments are
shown based on ANOVA post hoc tests (a > b > ¢

P < 0.05).

Lake Taihu, China

Paerl et al.. 201 | CEE 697z - Lecture #31



Atmospheric CO, Concentrations

» CyanoHABS exhibit high demand for CO, — limitation

» Buoyant CyanoHABs can directly intercept CO, diffusing
into the water from the atmosphere

» Photosynthetic potential [ e

{ |:: 350 ppm C O : 00 ppm C Oz :: 3500 ppm COg
is largely determined by |.| |« ;
atmospheric CO, ; :lf f s Mt |
concentration | SR B S

;% ::| EEE

o 2 4 a 2

0.2 meq liter!

Dwpth in bloom / mm

0.7 meq Hter

Fig. 3. Gross rates of photosyathetic O, production, cormesponding to the oxygen profiles shown
in Fig. 2 at an alkalinity of 0.2 meq liter ' (top) and (.7 meq liter ' {bottom) under variable CO,
concentrations in the headspace of the bloom—U0 ppm; air (350 ppm); twice the amount of CO, in
air {700 ppm}; and 10 the amount of COy i anr (3,500 ppn), The conon bars denote the stamdand

error of the mean,

Ibelings and Maberly, 1998 CEE 697z - Lecture #3|



Climate Change

» Increased temperatures

» Extreme patterns in precipitation
Increasing severity and length of droughts

Large precipitation events
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Increased Temperatures

» Faster growth 1} I\
. . = 80F ..-":.5. - l.-'}:"\.‘ Microcystis-
» Longer ice-free growing season § Promcentum/ o % /N aeruginosa
. . O e} s
» Decreased viscosity g A /|
Decreased resistance to 2 |coening/ | A /
20-radiata @ 4
migration C” :, Skelotonema)
0 & ' &
4 Increased Stabilit)’ Of ’ ° Temperza?ure {°C) ¥ 40
Stratifi Cati O n Fig. 4 — Effects of temperature on species-specific growth

rates of a representative CyanoHAR species (Microcystis
aeruginosa) vs. commonly encountered eukaryotic algal

} Exace rbate botto m Wate r. bloom species, including the chlorophyte Golenkinia

radiata, the diatom Skeletonema costatum, and the
dinoflagellate Prorocentrum minimum. Growth rate data are

hyp OXia_ from Reynolds (2006), Grzebyk and Berland (1995), and
Yamamoto and Nakahara (2005).

May stimulate internal nutrient

loadin
Implications: cyanoHABSs, once thought to be a tropical phenomenon may

become more common in temperate as well as tropical environments

Paerl & Paul 2012 CEE 697z - Lecture #31



Changes in Precipitation

» Low-flow droughts promote CyanoHABs
Less mixing

Longer residence time
» Salination

Stronger stratification

Some freshwater genera tolerate high salinity

» Intense precipitation events

Enrichment of nutrients through erosion, surface runoff, and
groundwater dischrage

Flushing & mixing of water column

May simply pass cyanobacteria downstream
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Fig. 3. Conceptual figure, illustrating the environmental processes that control
cyanobacterial blooms, including man-made management actions and impacts of
climate change.
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Less CHABs

More diatoms and
dinoflagellates

Fig. 2.

More CHABs

o

Eutrophication and potenital effects of climate change on Cyancbacterial Harmful Algal bloom (CHAB) abundance.

> O’Neil et al. 2012
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Eradication of Blooms

» Options:
Chemical treatment of blooms
Aeration and mixing
Sediment dredging

Sediment inactivation (us. Using aluminum sulfate)
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Chemical Treatment

» Algaecides: Copper sulfide, hydrogen peroxide, ...

Reduce cyanobacteria biomass by interfering with cell
processes

Negative impacts
Short term solution: bloom may recur within weeks

Toxicity to non-target organisms

» Flocculants
Cause coagulation and sedimentation the cyanobacteria layer
Reduce lysis and resulting cyanotoxin release
Prevent regrowth and resuspension of the cyanoHAB
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Algaecides

» Algaecides induce cell lysis, leading to release of
intracellular toxins 150

Coutrel Cowtrol (25L)
100
50
169
Table |. Recommended dosages for lake water and dosages of the —
six chemicals used in the three Batches (mg|~"). The dosages used *® Reglene A NeOl
in the batch eaxperiments were higher than recommended, as Lhe -
phytoplankion biomuss (as dry wi) was R0-fold more concentrated -
than in the lake water. NA indicates the chemical was not used in -1
that batch expenment o |
Diosages used ﬁ o
Chemical Recommended dosages Baich | Baiwch 2 Baich 3 é EMnly Simuxive
Reglone -39 1] b 0 # 100
Hal 0.5-1.5 NA 4 a4 3 "
KMnly, =3 (] {0 10 5 50 P
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Fig. 1. Release of MCLR into the surrounding water after chemical treatments. The amount released is
expressed as a percent of detectable MCLE within the cyanobacterial cells at day (. Mote that one lime

treatment and ““E‘E‘E“&'@ﬁ“’f’ g%-i:_— Gur"ébgnﬁ'l,m 25-liter jars. Replicates for Batches 2 and 3 are

Lam et al, 1995



Tahle 1
summary of advantages and disadvantages of chemical measures for management of cyanobacterial blooms.

bethod or technique Advanrages [risadvanrages
betals with the mode of acion based on cell toxicity - Extremely low price — Toxicity against non-farget species
{copper, silver)

— Accumulation in the environment
- Release of toxins after treatrment

Merals as coagulation agents [aluminum, iron, — Extremely low price — Can influence pH values in water body
calcium)
— Low toxicity against non-target species if used - Shor-verm effect if used in water bodies with low
correctly residence time

- Suitable for phosphomus removal as well
- Long-term effects if used in water bodies with high
residence time

Hydrogen peroxide — Low price — Risky manipulation with concentrated ydrogen
peroxide
— Low toxicity for non-target species — Fast degradakbiliny (short time of action}
— Fast degradabilicy
- Selective owards cyanobacreria
Phihalocyanines - High toxicity towards photoautotrophs - Insufficient knowledge about toxicity towards fish
and macrophyies
- Biodegradable - Blue|green coloraton
Titanium dioxide and other insoluble - Toxicity towards photoautotrophs via BOS - Insoluble in water
photosensitizers production
Herbicides (diuron, endothal, atrazine, simazine and - Low price — Toxicity against non-farget species
others)
— Toxicity towards photoautotroghs - Accumulation in the environment

- Toxic residues
- Release of toxins after the treatment

Chemicals derived from natural compounds - Effective in low concenirations - Preparation of extracts or isolation of alkaloids in
high amounts
- Bindegradable — Unknown toxicity towards other non-targer species
- Matural products - Price for exaracton|synihesis

Jancula & Marsalek, 201 | CEE 697z - Lecture #31



Artificial Mixing
» Counter formation of surface blooms

» Oxegenate the hypolymnion

Reduce internal nutrient loading from sediments

P R R T Tl
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Bloom Prevention

» Controlling nutrient concentrations
C,N,P
Long-term treatment strategy

» TMDLs

Program to control non-point sources of pollution
Run on a state-by-state basis

Require some level of watershed assessment
Limitations

Difficulty controlling autocthonous nutrient recycling

No “one size fits all”’ solution

» Monitoring
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Additional Slides
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Less Commmon Methods of HAB Treatment

» Sediment

Dredging

Capping

Chemical treatment to “lock in” nutrients and cyanobacteria
» Integrated approaches (e.g. Wang et al., 2012)

Combined use of:
hydrogen peroxide as an algaecide
Lake sediment clay and polymeric ferric sulfate as flocculants

Algal hloom 90 .89
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(XY o T ] &
220
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Toxin Production

» Some cyanobacteria produce multiple types of toxins

» Some produce no toxins
» Some produce toxins that are held within the cell (e.g.
Microcystis), while others release a portion of the toxins

produced into the environment immediately (e.g.
Cylindrospermopsis)
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Why Produce Toxins?

There are many speculated reasons...

» These tend to fall into two categories:
Theory I: Direct Competitive Advantage
Theory 2: Internal Chemical used in Cell Physiology

» Known abiotic factors
Nutrient concentration
Light intensity
Temperature

Holland & Kinnear, 2013 CEE 697z - Lecture #31



Theory 1: Direct Competitive Advantage

» Grazing defense
Toxins are toxic to zooplankton (e.g. rotifers, daphnia,
» Allelopathy

The production of chemicals to prohibit the function &/or
growth of other organisms

» Assistance in Nutrient Uptake

e.g. Iron Scavenging
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Theory 2: Internal Role in Cell Physiology

» Assistance in nutrient uptake

» lron scavenging

» Adaptation to oxidative stress &/or carbon-nitrogen
metabolism

» Maintenance of homeostasis

» Infochemicals

Chemical cues in the environment which act as a source of
information about both the biotic and abiotic environment

May act as “signaling molecules” between cyanobacteria
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Final thoughts:

» Triggers for cyanotoxin production are not well
understood!

» Cyanobacteria have been around a long time

The original ecological roles of cyanotoxins may have been lost
or replaced over time.
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» To next lecture
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