

	Table	1.1			
Apparent second-order rate constants for the reaction of oxidants with cyanotoxins (Adapted from Rodriguez et al. 2007)					
Oxidant	Apparent second-o	Anatoxin_a	pp) at pH=8 at 20°C		
Ozone	4.1 × 10 ⁵	6.4 × 10 ⁴	3.4 × 10 ⁵		
Hydroxyl radical	1.1×10^{10}	3.0×10^{9}	5.5 × 10 ⁹		
Chlorine	33	<1	490		
Chloramine	<1	< 1	<1		
Permanganate	357	2.3×10^{4}	0.3		
Chlorine dioxide	1	Low	0.9		

Cylindrospermopsin

Initial conditions	PAC	MF/UF	Chlorine	Final		
MIB, 100 ng/L 100% EC	60	60	60	60 ng/L		
Geosmin, 100 ng/L, 30% EC	79	9	9	9 ng/L		
CYN, 20 ug/L, 50% EC	14	4	0.8	<1 ug/L		
	PAC	Coagulation	MF/UF	Chlorine	Final	
MIB, 100 ng/L 100% EC	60	60	60	60	60 ng/L	
Geosmin, 100 ng/L, 30% EC	79	16	9	9	9 ng/L	
CYN, 20 ug/L, 50% EC	14	5	4	0.8	<1 ug/L	
	Coagulation	MF/UF	GAC	Chlorine	Final	
MIB, 100 ng/L 100% EC	100	100	30	30	30 ng/L	
Geosmin, 100 ng/L, 30% EC	37	30	6	6	6 ng/L	
CYN, 20 ug/L, 50% EC	11	10	5	1	1 ug/L	
	Coagulation	MF/UF	Ozone	GAC	Chlorine	Final
MIB, 100 ng/L 100% EC	100	100	50	15	15	15 ng/L
Geosmin, 100 ng/L, 30% EC	37	30	15	3	3	3 ng/L
CYN, 20 ug/L, 50% EC	11	10	0.1	0.5	0.1	<<1 ug/L
	MF/UF	NF/RO*	Chlorine	Final		
MIB, 100 ng/L 100% EC	100	60	60	60 ng/L		
Geosmin, 100 ng/L, 30% EC	30	18	18	18 ng/L		
CYN, 20 ug/L, 50% EC	10	4	0.8	<1 ug/L		
	Coagulation	MF/UF	NF/RO*	Chlorine	Final	
MIB, 100 ng/L 100% EC	100	100	60	60 ng/L	60 ng/L	
Geosmin, 100 ng/L, 30% EC	37	30	18	18	18 ng/L	
CYN, 20 ug/L, 50% EC	11	10	4	0.8	<1 ug/L	

Treatm موريد Table 2. Cyanotoxin Treatr	ent summary	From: Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems, USEPA, July 2012		
Treatment Process	Relative Effectiveness			
Intracellular Cyanotoxins	Removal (Intact Cells)			
Pretreatment oxidation	Avoid pre-oxidation because often lyses cyanobacteria cells releasing the cyanotoxin to the water column.			
Coagulation/Sedimentation/ Filtration	Effective for the removal of intracellular toxins when cells accumulated in sludge are isolated from the plant and the sludge is not returned to the supply after sludge separation.			
Membranes	Study data is scarce; it is assumed that membranes would be effective for removal of intracellular cyanotoxins. Microfiltration and ultrafiltration are effective when cells are not allowed to accumulate on membranes for long periods of time.			
Flotation	Flotation processes, such as Dissolved Air Flotation (DAF), are effective for removal of intracellular cvanotoxins since many of the toxin-forming cvanobacteria are buovant.			
Oxidation processes	Avoid because often lyses cyanobacteria cells releasing the cyanotoxin to the water column.			
Extracellular Cyanotoxins	Removal			
Membranes	Depends on the material, membrane pore size distribu are likely effective in removing extracellular microcy: applicable for removal of some extracellular cyanotos Further research is needed to characterize performanc	ation, and water quality. Nanofiltration and ultrafiltration stin. Reverse osmosis filtration would likely only be cins like cylindrospermopsin. Cell lysis is highly likely. e.		
Potassium Permanganate	Effective for oxidizing microcystins and anatoxins. Further research is needed for cylindrospermopsin.			
Ozone	Very effective for oxidizing extracellular microcystin, anatoxin-a and cylindrospermopsin.			
Chloramines	Not effective			
Chlorine dioxide	Not effective with doses used in drinking water treatment.			
Chlorination	Effective for oxidizing extracellular cyanotoxins as long as the pH is below 8, ineffective for anatoxin-a.			
UV Radiation	Effective of degrading microcystin and cylindrosperm	nopsin but at impractically high doses.		
Activated Carbon	PAC: Most types are generally effective for removal of microcystin, anatoxin-a and cylindrospermopsin, especially wood-based activated carbon. GAC: Effective for microcystin but less effective for anatoxin-a and cylindrospermopsins.			

Filtration Removal Strategy:

- Standard sand, anthracite, multimedia that meet state standards are effective at removing cyanobacteria cells
- GAC may be biologically active; media becomes spent within weeks
- If possible, <u>do not</u> recycle filter backwash, sludge supernatant, etc. during a cyanobacterial bloom

	Filtration	
From: S	klenar,Westrick & Szlag, 2014	

