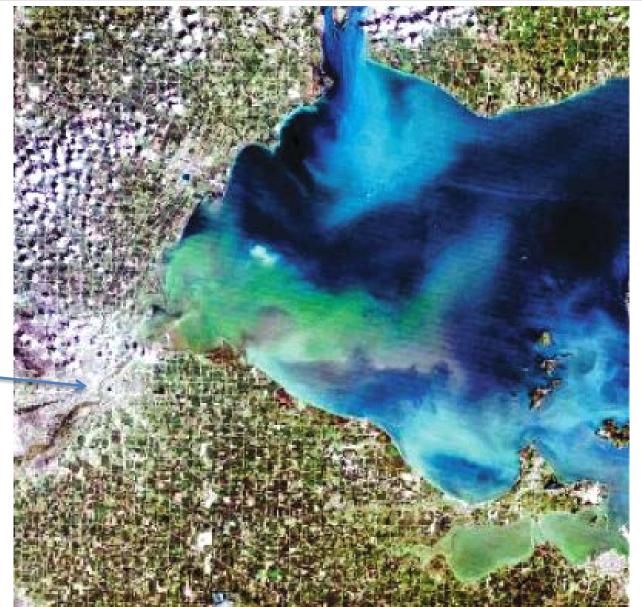
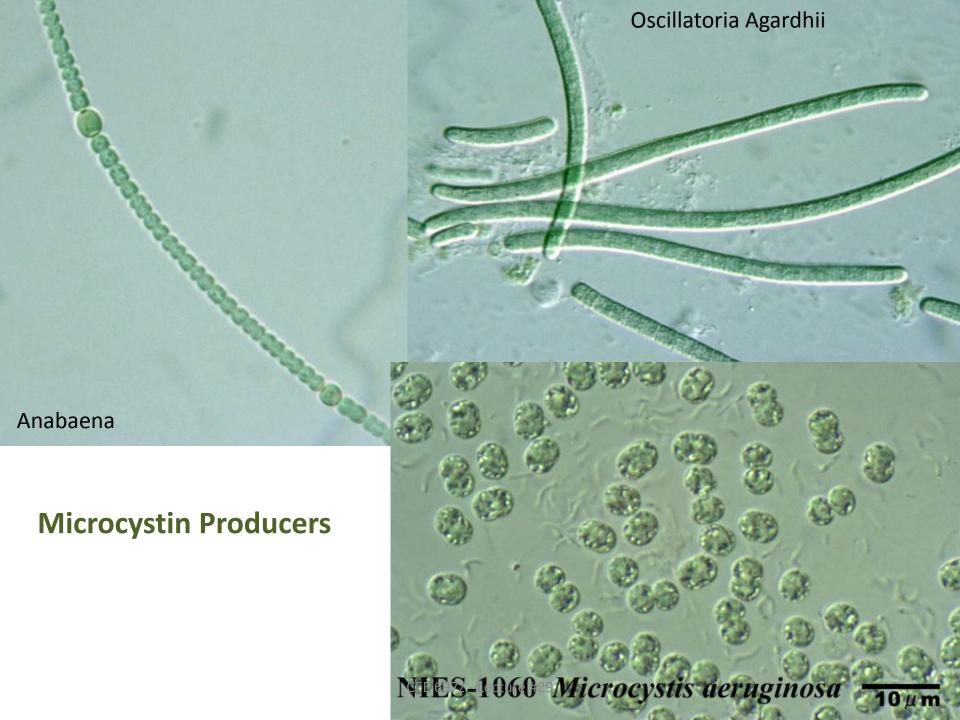
CEE 697z

Organic Compounds in Water and Wastewater


Cyanotoxins

qPCR Method

Prepared and presented by Kristie Stauch-White


Lecture #29

qPCR Quantification of Microcystis during Lake Erie Blooms in 2003 and 2004

Maumee River

LANDSAT 7 Image of Western Basin of Lake Erie near the mouth of the Maumee River

Cyanobacterial Hepatotoxins

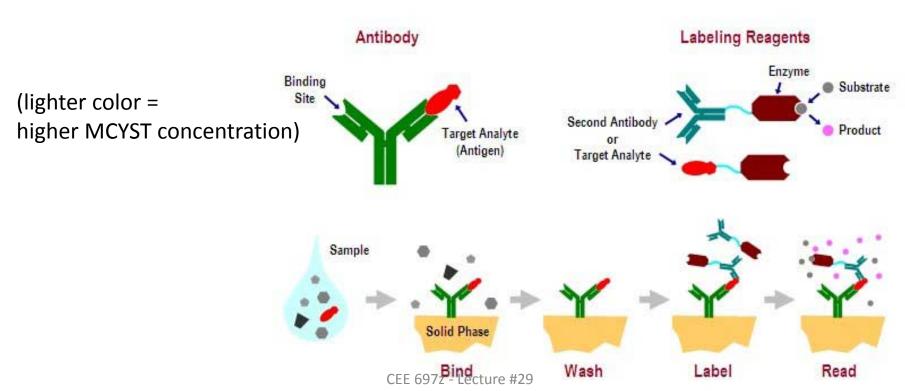
Microcystin

otoxins.

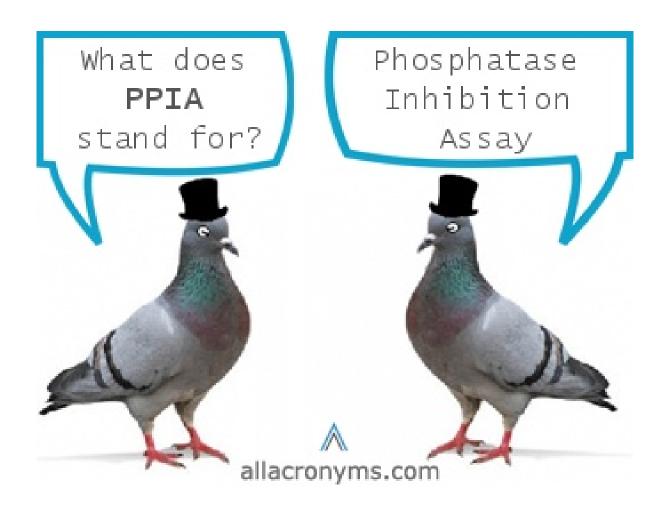
Environment International 59, 303-327.----

BIOASSAYS TO DETECT CYANOTOXINS

- Animal Bioassays
- Immunoassays:
 - ELISA
 - PPIA
- qPCR


ELISA - Enzyme Linked Immunosorbent Assay

Lowest Detection Limit .05 ppb to .5 ppb

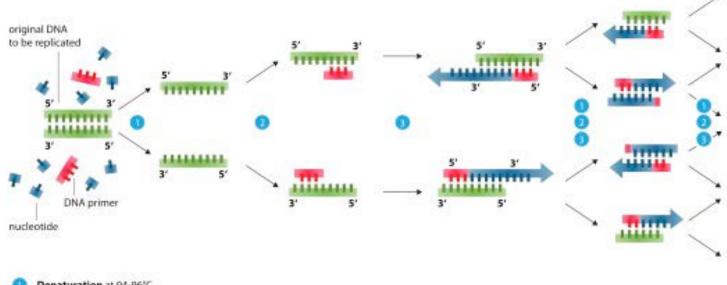

Direct Competitive ELISA using Polyclonal Antibody

- Anti-Microcystin antibody attached to a high binding capacity microtiter plate
- MCYST-LR is used as a standard
- Microcystin-LR-peroxidase used to compete with MCYST-LR for the binding site of the antibody on the microtiter plate.
- Color developed inversely proportional to MCYST concentration

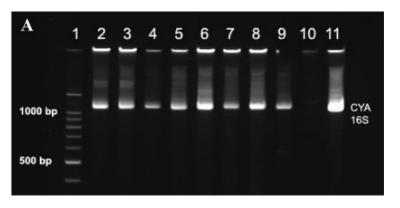
PPIA

PPIA (Phosphatase Inhibition Assay) – How it works:

- MCYSTs and NODLNs naturally potent inhibitors of protein serine and threonin phosphatases (PP1 and PP2A)
- Protein phosphatases dephosphorylate p-nitrophenylphosphate
 (pNPP) commonly used substrate for alkaline phosphatases
- Colorimetric
- Detection limit similar to ELISA (1 20 μg/L)
- Advantage over ELISA ability to detect bioactivity in MCYSTs and NODLNs – therefore based on functional activity rather than structure


Primers:

mcyB 2959F mcyB 3278R


TGGGAAGATGTTCTTCAGGTATCCAA AGAGTGGAAACAATATGATAAGCTAC

26 bp each, PCR product 60 – 1600 bp

Polymerase Chain Reaction - PCR

- Denaturation at 94-96°C
- Annealing at 60°C
- Elongation at ca. 72 °C

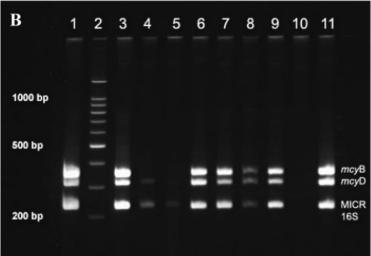


FIGURE 3. Gel image of multiplex PCR results. Gel A: detection of cyanobacterial 16S rDNA fragment. Lane 1: 100 bp molecular weight marker; lane 2: site 1a; lane 3: site 1b; lane 4: site 2; lane 5: site 3; lane 6: site 4; lane 7: site 5; lane 8: site 6; lane 9: site 7; lane 10: negative control, no template DNA; lane 11: positive control (*M. aeruginosa* LE-3 genomic DNA). Gel B: detection of *Microcystis* spp. 16S rDNA fragment and microcystin synthetase genes *mcy*B and *mcy*D. Lane 1: site 1a; lane 2: 100 bp molecular weight marker; lane 3: site 1b; lane 4: site 2; lane 5: site 3; lane 6: site 4; lane 7: site 5; lane 8: site 6; lane 9: site 7; lane 10: negative control, no template DNA; and lane 11: positive control (*M. aeruginosa* LE-3 genomic DNA).

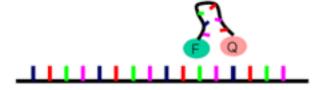
TABLE 3. Chlorophyll a and Toxin Concentrations in Samples Collected in the Western Basin of Lake Erie in August 2003 (Sample Stations Numbered 1—7) and 2004 (Sampling Stations Numbered with 3 or 4 Digits) a

sampling station	chlorophyll <i>a</i> (µg L ⁻¹)	microcystin (μg of microcystin LR equiv L ⁻¹)
1	40.0	15.4
2	5.2	< 0.3
* 3	6.4	0.3
4	4.0	< 0.3
5	15.3	0.4
6	26.0	1.8
7	6.5	< 0.3
493	8.8	0.1
311	14.1	0.3
1163	20.1	2.6
885	19.1	0.1
496	21.7	0.4
495	15.5	0.4
494	12.8	0.3
357	7.4	0.1
974	7.8	1.0
882	8.3	0.04

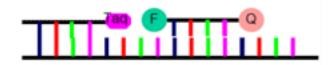
^a Microcystin concentrations are in microcystin–LR activity equivalents per liter. Detection limits are controlled by the volume of water filtered (2003, \sim 1 L; 2004, \sim 20 L).

TABLE 4. Initial Screening of Water Samples using Multiplex PCR Assays^a

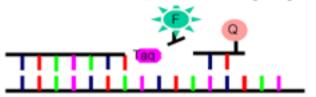
sampling site	Cyan 16S	Micr 16S	<i>mcy</i> B	<i>mcy</i> D
1	+	+	+	+
2	+	+	_	+
*3	+	+	_	_
4	+	+	+	+
5	+	+	+	+
6	+	+	+	+
7	+	+	+	+
493	+	+	+	+
311	+	+	+	+
1163	+	+	+	+
885	+	+	+	+
496	+	+	+	+
495	+	+	+	+
494	+	+	+	+
357	+	+	+	+
974	+	+	+	+
882	+	+	+	+

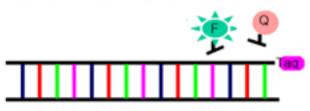

 $[^]a$ The columns are labeled with the PCR primers used for the analysis. The presence or absence of a visible band in the gel after staining with SYBR green I is indicated by + or -.

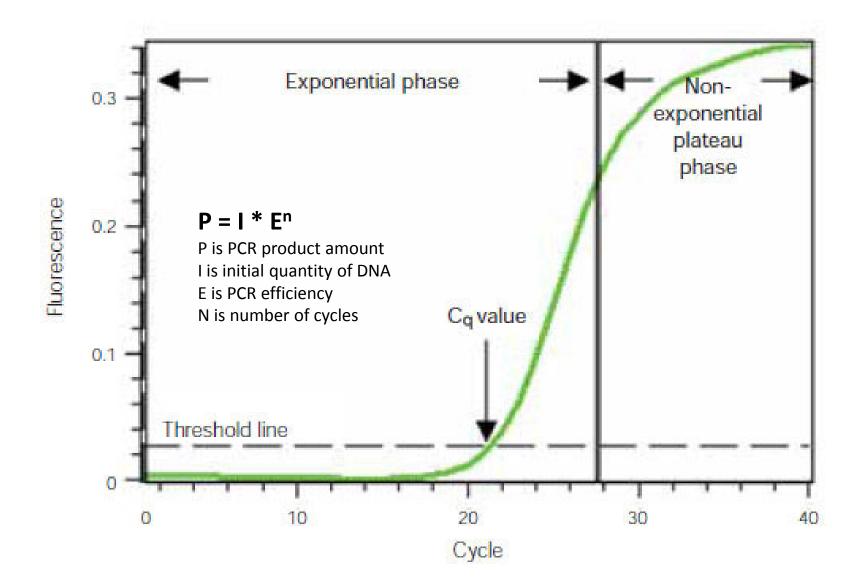
^{*}Toxin detected, but toxin-producing genes not detected at this site

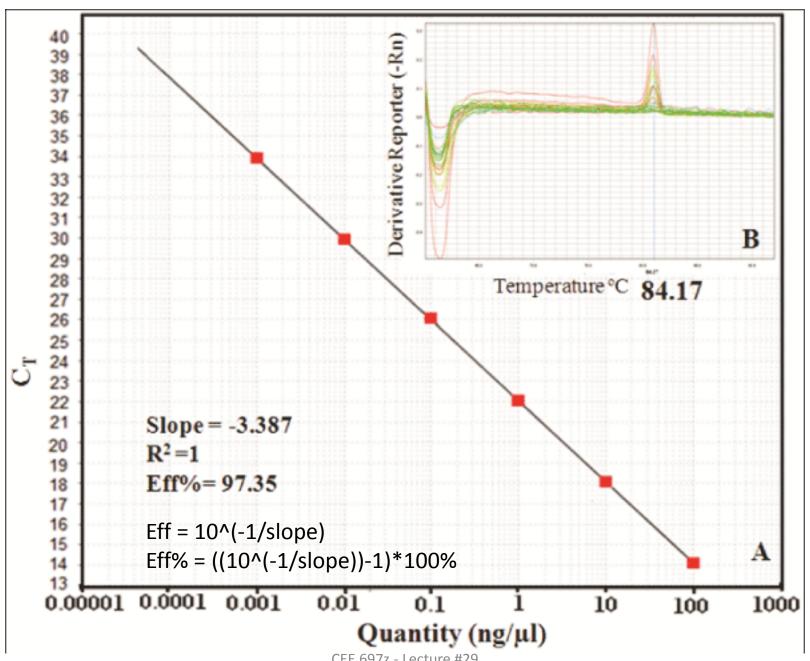

^{*} Neither toxin producing gene found at this site, but microcystin detected (see Table 3)

qPCR Fluorescence Emission


1. Denaturation Step


2. Probe Hybrydization


3. Extension / Probe Hybrydization



4. Fluorescence emission

CEE 697z - Lecture #29

CEE 697z - Lecture #29

TABLE 5. Real-Time PCR-Based Quantification of Abundances of Three Target Genes in Water Samples and Cell Abundance as LE-3 Equivalents of Total Cyanobacteria, Total Microcystis, and Toxic Microcystis (Cells Carrying mcyD Gene) in Samples Collected in August 2003 (Sampling Sites Numbered 1-7) and August 2004 a

sampling site	Cyan 16S copies L ⁻¹	Micr 16S copies L ⁻¹	<i>mcy</i> D copies L ^{−1}	total cyanobacteria (LE-3 equiv) L ⁻¹	total <i>Microcystis</i> (LE-3 equiv) L ⁻¹	toxic <i>Microcystis</i> (LE-3 equiv) L ^{–1}
1	3.9 (\pm 3.8) $ imes$ 10 ¹⁰	3.4 (± 0.5) $ imes$ 10 ¹⁰	3.2 (\pm 0.6) $ imes$ 10 ⁸	9.9 (± 1.1) $ imes 10^8$	3.9 (\pm 1.1) $ imes$ 10 ⁸	1.1 (\pm 0.3) $ imes$ 10 ⁶
2	$1.7~(\pm 0.5) \times 10^{7}$	6.2 (\pm 1.8) $ imes$ 10 ⁴	BQL	3.2 (\pm 0.6) $ imes$ 10 ⁵	$1.8~(\pm 0.5) \times 10^3$	BQL
3	1.5 (± 0.1) $ imes$ 10 9	BQL	ND	3.1 (\pm 0.3) $ imes$ 10 ⁷	BQL	ND
4	$2.1~(\pm 0.6) imes 10^{8}$	$1.1~(\pm 0.7) \times 10^7$	$2.8~(\pm 0.6) \times 10^{6}$	4.7 (± 0.5) $ imes 10^6$	$6.6~(\pm 4.3) \times 10^4$	$9.0~(\pm 4.0) \times 10^{4}$
5	1.0 (± 0.1) $ imes$ 10 8	1.7 (± 0.0) $ imes 10^7$	7.0 (\pm 4.2) $ imes$ 10 ⁵	1.9 (± 0.1) $ imes$ 10 6	$1.0~(\pm 0.0) imes 10^{5}$	$3.4~(\pm 2.0) imes 10^4$
6	$2.9~(\pm 0.3) imes 10^{8}$	BQL	BQL	5.0 (± 0.6) $ imes 10^6$	BQL	4.2 (\pm 1.2) \times 10 ³
7	$8.7~(\pm 0.2) \times 10^7$	$2.4~(\pm 6.9) imes 10^{5}$	$7.7~(\pm 2.7) \times 10^4$	$1.6~(\pm 0.1) \times 10^6$	7.5 (± 0.5) $\times 10^3$	$8.6 \ (\pm 2.8) \times 10^3$
493	4.3 (\pm 1.0) $ imes$ 10 8	5.1 (\pm 0.8) $ imes$ 10 ⁷	4.2 (\pm 2.8) $ imes$ 10 ⁵	$5.5~(\pm 1.4)~ imes~10^{6}$	7.0 (\pm 1.1) $ imes$ 10 ⁵	$2.0~(\pm 1.3) \times 10^4$
311	6.6 (\pm 0.3) $ imes$ 10 8	1.3 (± 0.7) $ imes$ 10 8	$3.9~(\pm 0.5) imes 10^6$	8.7 (\pm 0.4) $ imes$ 10 ⁵	$1.8~(\pm 1.0) \times 10^6$	$1.8~(\pm 0.2) \times 10^{5}$
1163	$5.6~(\pm 0.4) imes 10^9$	5.6 (\pm 0.4) $ imes$ 10 ⁷	$1.5~(\pm 1.0) imes 10^{6}$	7.9 (\pm 0.2) $ imes$ 10 ⁷	7.4 (± 0.6) $ imes 10^5$	$6.8~(\pm 4.5) \times 10^4$
885	$2.8~(\pm 0.3) imes 10^{8}$	4.0 (\pm 0.8) $ imes$ 10 ⁷	$3.5~(\pm 0.3) imes 10^{6}$	$3.9~(\pm 0.4) imes 10^6$	$5.4~(\pm 1.1) imes 10^{5}$	$1.6~(\pm 1.6) imes 10^{5}$
496	8.0 (\pm 2.2) $ imes$ 10 ⁸	1.7 (± 0.1) $ imes$ 10 8	6.0 (\pm 0.3) $ imes$ 10 ⁶	$1.6~(\pm 7.8) \times 10^7$	$3.2~(\pm 1.5) \times 10^6$	$2.8~(\pm 0.1) \times 10^{5}$
495	1.2 (± 0.4) $ imes$ 10 8	8.3 (± 0.3) $ imes 10^6$	$1.5~(\pm 0.7) imes 10^{5}$	1.3 (± 0.8) $ imes$ 10 ⁶	$8.4~(\pm 2.9) \times 10^4$	$7.1~(\pm 3.4) \times 10^3$
494	$2.3~(\pm 0.7) imes 10^{8}$	1.6 (\pm 0.2) $ imes$ 10 ⁷	1.4 (\pm 1.0) $ imes$ 10 6	3.3 (± 1.1) $ imes 10^6$	$2.3~(\pm 0.3) \times 10^{5}$	$6.6~(\pm 4.7) \times 10^4$
357	$2.5~(\pm 1.3) \times 10^{7}$	$0.8~(\pm 1.1) \times 10^7$	$3.5~(\pm 0.3) imes 10^4$	$2.7~(\pm 1.9) imes 10^{5}$	$5.4~(\pm 6.4) imes 10^4$	$1.7~(\pm 0.2) \times 10^3$
974	1.2 (± 0.05) $\times 10^7$	4.0 (\pm 1.3) $ imes$ 10 5	$1.5~(\pm 1.0) imes 10^4$	1.4 (± 0.1) $ imes$ 10 ⁵	$4.6~(\pm 1.5) \times 10^3$	$8.0~(\pm ND) \times 10^2$
882	6.2 (± 1.0) $\times 10^7$	3.5 (\pm 0.1) \times 10 ⁷	7.4 (\pm 1.5) $ imes$ 10 ⁵	7.5 (\pm 1.3) $ imes$ 10 ⁵	4.8 (\pm 0.2) \times 10 ⁵	$3.4~(\pm 0.7) \times 10^4$

^a Description for all samples n=3 (\pm standard deviation) except sampling site 1, where n=5 (\pm standard deviation) and sampling site 974 toxic *Microcystis*, where n=2. ND = not detected, and BQL = detected but below quantifiable limit.

• To next lecture