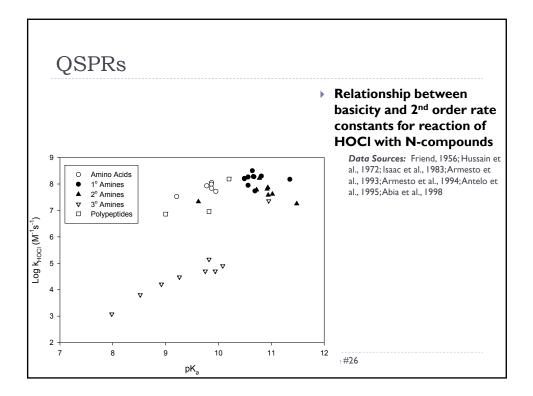
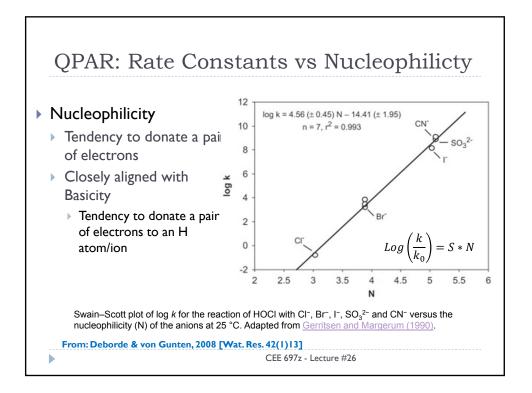
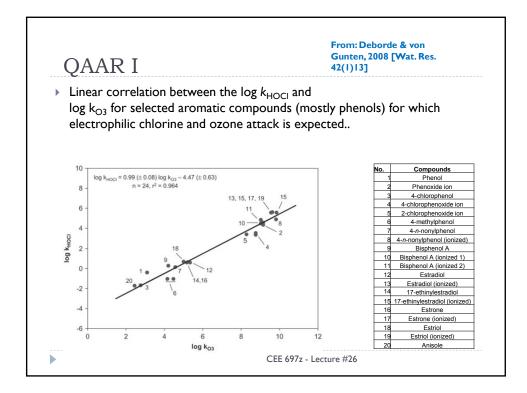
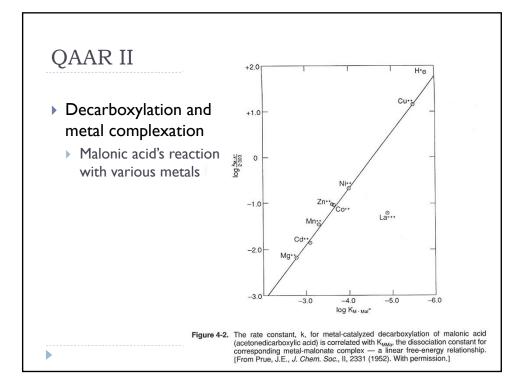
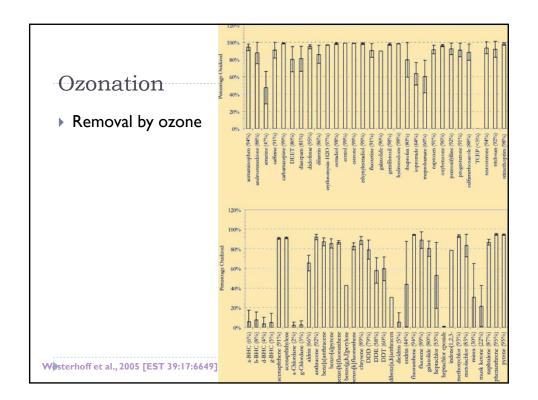

	Substituent	σ	σ_	σ_{n} +	σ+"	σ.	R	F
	-N(CH ₃) ₂	-0.83	-0.16	-1.70			-0.98	0.1
Components	-NH ₂	-0.66	-0.15			0.10	-0.74	0.0
Components	-OH	-0.35	0.08			0.25	-0.70	0.3
	-OCH ₃	-0.26	0.08	-0.76	0.05	0.25	-0.56	0.2
	-C(CH ₃) ₃	-0.20	-0.10	-0.26			-0.18	-0.0
-	-CH ₃	-0.16	-0.07	-0.31	-0.06	-0.05	-0.18	0.0
Composition	-CH(CH ₃) ₂	-0.15	-0.04	-0.28			-0.19	0.0
•	-CH ₂ C ₆ H ₅	-0.09	-0.08	-0.28			-0.05	-0.0
Resonance (R)	-CH=CHC ₆ H ₅	-0.07	0.03	-1.00			-0.17	0.1
resonance (ry	-CH=CH ₂	-0.04	0.06	-0.16			-0.17	0.1
Field (F) or Inductive	-OC ₆ H ₅	-0.03	0.25	-0.50			-0.40	
	-C ₆ H ₅	-0.01	0.06	-0.18	0.11	0.10	-0.13	
Relationship	-H	0	0	0	0	0	0	
Relationship	-NHCOCH ₃	0.00	0.21	-0.60			-0.31	0.
	-F	0.08	0.35	-0.07	0.35	0.52	-0.39	0.4
	-Cl -Br	0.23	0.37	0.11	0.40	0.47	-0.19 -0.22	0.4
$\pi \rightarrow D + E$	-1	0.23	0.35	0.13	0.36	0.43	-0.22	0.4
$\sigma_p \approx R + F$	-CONH ₂	0.36	0.28	0.11	0.00	0.00	0.10	0.:
	-CHO	0.42	0.35	0.73			0.09	0.
$\sigma_m \approx 0.3R + 1.1F - 0.03$	-COC ₆ H ₅	0.43	0.34	0.51			0.12	0.3
$O_m \approx 0.5K + 1.1T - 0.05$	-COOCH ₃	0.45	0.36	0.49			0.11	0.
	-COCH ₃	0.50	0.38				0.17	0.3
	-CN	0.68	0.62	0.66	0.56	0.58	0.15	0.
	-CH ₃ SO ₂	0.71	0.65			0.59		
	-NO ₂	0.79	0.71	0.79	0.67	0.63	0.13	

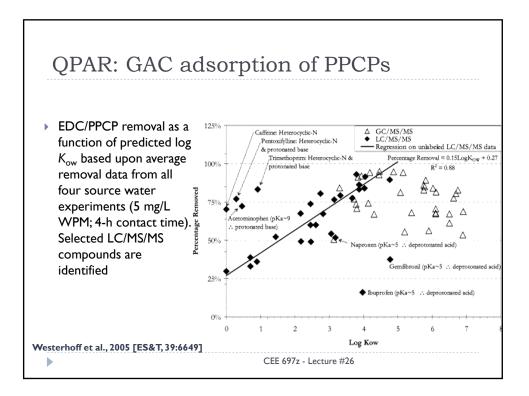

-						
From						
Schwarzenbach	TABLE 12.4 Examples	of Taft Polar	and Steric S	ubstituent Constant for	Aliphatic	Systems
et al., 1993	Substituent	σ*	Es	Substituent	σ*	Es
	—Н	0.49	1.24	-CH ₂ C ₆ H ₅	0.22	-0.38
 Environmental 	-CH ₃	0.00	0.00	-CH ₂ CH ₂ C ₆ H ₅	0.08	-0.38
Organic	$-C_2H_5$	-0.10	-0.07	-CH ₂ F	1.10	-0.24
-	$-n-C_3H_7$	-0.12	-0.36	-CHF ₂	2.05	-0.67
Chemistry	-i-C ₃ H ₇	-0.19	-0.47	-CH ₂ Cl	1.05	-0.24
/	$-n-C_4H_9$	-0.13	-0.39	-CHCl ₂	1.94	-1.54
	-i-C ₄ H ₉	-0.13	-0.93	-CCl ₃	2.65	- 2.00
	$-s-C_4H_9$	-0.21	-1.13	-CH ₂ CH ₂ Cl	0.39	-0.90
	$-t-C_4H_9$	-0.30	-1.54	-CH ₂ Br	1.00	-0.27
	-cyclo-C ₆ H ₁₁	-0.15	-0.79	-CHBr ₂		-1.86
	-CH ₂ -cyclo-C ₆ H ₁₁	-0.06	-0.98	-CBr ₃		-2.43
	-CH=CH,	0.36	-1.63	-CH ₂ OCH ₃	0.52	-0.19
			-2.55	-CH2OC6H3	0.85	-0.33

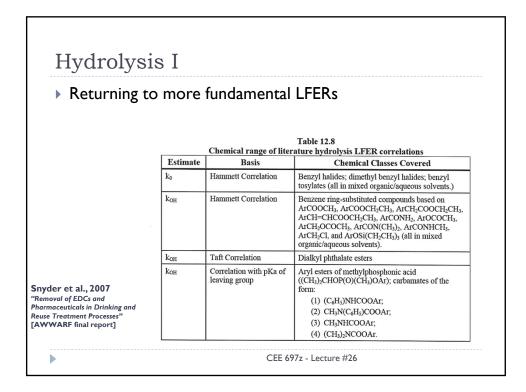







Degr	adation of Orga	nic Chlora	amines
	Parent Amine	k_{obs} (s ⁻¹)	t _{1/2} (min)
	Alanine	1.3E-04	86
	Glycine	1.4E-06	8400
	Histidine	2.7E-04	43
	Leucine	1.6E-04	72
	Phenylalanine	2.2E-04	52
	Serine	2.4E-04	49
	Creatinine	3.5E-06	3300
	Glycine N acetyl	6.0E-07	19000
	Glycine ethyl ester	2.3E-04	50
	Glycylglycine	1.0E-05	1100
	Sarcosine	5.3E-05	210





Other appro	aches			
 Extending estimations to 		of predictive methods	e 12.1 for fate and transport j	properties
more robust &	Fate and Transport Property	Chemical Information	Approach	Data Input
empirical	Biodegradation rate (or tendency)	Substructure fragments	Howard-Boethling group contribution	Functional group correlation parameters
approximations	Hydrolysis rate constant at basic pH Electronic and steric model (Taft equation)	Steric (<i>Es</i>) and electronic (σ^*) parameters of tabulated chemicals	Multi-variable linear Regression (MLR) analysis of tabulated data	Correlation parameters (group contribution) optimized
	Percent removal by: Ozone, chlorine, UF	Adsorption, distribution and metabolism data	Monte Carlo (MC) statistical mechanics simulations and MLR analysis	2D molecular structures
Snyder et al., 2007 "Removal of EDCs and Pharmaceuticals in Drinking and Reuse Treatment Processes" [AWWARF final report]	Air-water partitioning (Henry's law constant)	Structure fragments	Activity coefficient model (ie., UNIFAC) with thermodynamic relationships, or Hine- Mookerjee as 2 nd option	Vapor pressure and BIP
	Adsorption onto activated carbon	Substructure fragments	Liquid-phase Polanyi isotherm model	Aqueous solubility limit, molar volume at Tb, liquid density

	Table 12.9 Hydrolysis rate constant estimation method recommendation				
	Category	Chemical Name	CAS#	Estimation Method	Parameter availability
Hydrolysis II	I	DCPA solution Acetylsalicylic Acid DDT	1861321 50782 50293 54910893	Hammett Hammett Hammett	NO NO NO NO
Applied to PPCPs		Fluoxetine Methoxychlor Mirex	72435 2385855	Hammett Hammett Hammett	NO NO
		Acetophenone Androst-4-ene-3,17-dione Anthracene	98862 63058 120127	N/A N/A N/A	Not needed Not needed Not needed
		Benzo[a]pyrene Bisphenol A Cholesterol Estriol	50328 80057 57885 50271	N/A N/A N/A N/A	Not needed Not needed Not needed Not needed
		Guaiacol Ibuprofen Nabumetone	90051 15687271 42924538	N/A N/A N/A	Not needed Not needed Not needed
	п	Naproxen Nonylphenol Para-Dodecylphenol	22204531 25154523 104438	N/A N/A N/A	Not needed Not needed Not needed
		Pentachloronitrobenzene Phenol, 4-tert-Butyl Progesterone	87865 98544 57830	N/A N/A N/A	Not needed Not needed Not needed
		Resorcinol Testosterone Vanillin	108463 58220 121335	N/A N/A N/A	Not needed Not needed Not needed
		Coprostanol Diethylstilbestrol Aniline	360689 56531 62533	N/A N/A	Not needed Not needed
		Benzenehexachloride (BHC) Musk Ketone	118741 81141	N/A N/A N/A	Not needed Not needed Not needed
		Toxaphene Nonachlor, trans- Heptachlor	8001352 39765805 76448	No published corr. No published corr. No published corr.	-
		Nadolol Propranol Aldrin	42200339 525666 309002	No published corr. No published corr. No published corr.	-
nyder et al., 2007 emoval of EDCs and	III	Allethrin, d-trans Bromacetic acid 1,2-dibromoethane	584792 79083 106934	No published corr. No published corr. No published corr.	-
Pharmaceuticals in Drinking and Reuse Treatment Processes" [AWWARF final report]		Chloroacetic acid o-Chloroaniline Chlorpheniramine Chloroform	79118 95512 132229 67663	No published corr. No published corr. No published corr. No published corr.	-
	IV	Pentachloronitrobenzene Diethyl Phthalate (DEP) Butyl benzyl phthalate (BBP)	82688 84662 85687	No published corr. Taft Taft	YES NO
•	Class I Class II Class III	Hammett correlation applies (No hydrolyzable groups (negl No correlation for chemical c	limited parame	eters) sis)	
r	Class IV	Taft correlation applies (limit			,

