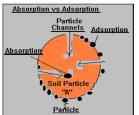

Print version

Sorption of PPCPs

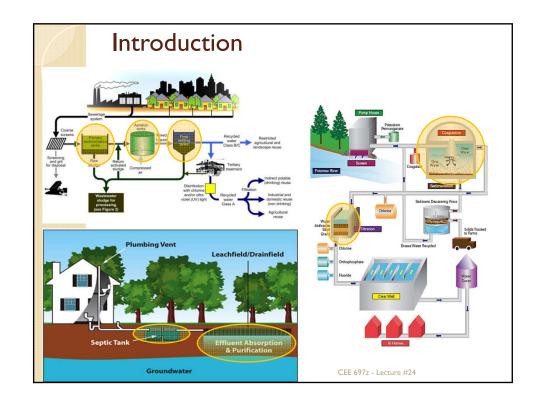
Organic compounds in water and wastewater

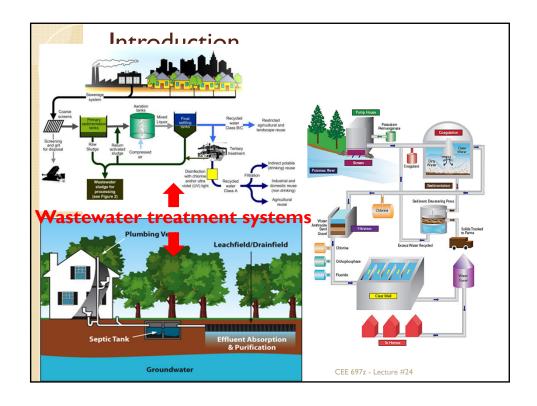
Soonmi Kim


Introduction

Sorption?

Sorption is a physical and chemical process by which one substance becomes attached to another


Adsorption


Accumulation of the molecular species at the surface rather than in the bulk of the solid or liquid

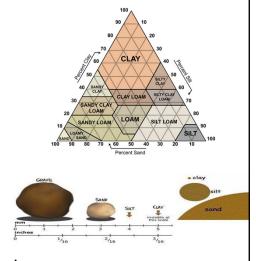
Absorption

Assimilation of molecular species throughout the bulk of the solid or liquid

Factors affecting Sorption

I) Sorbents properties

2) Sorbate properties


3) Solution properties

CEE 697z - Lecture #24

Sorbents

- 1.Types of sorbent
- 1) Biosolids (Sludge)
- Primary sludge
- Secondary sludge
- 2) Soils
- Sand
- Silt
- Clay
- 3) Coagulants
- Al, Fe, or Mn complex

2. Surface area of sorbents

Factors affecting Sorption

1) Sorbent properties

2) Sorbate properties Caffeine

3) Solution properties

CEE 697z - Lecture #24

Sorbate properties

Molecular Weight (MW)

- in general, as increase MW, solubility decreases, adsorption increases
- as increase MW, diffusivity decreases, so rate of transport decreases
- at very high MW, may exclude some compounds from small pores

Polarity

- in general, if more polar, more hydrophilic, less absorption (stronger interaction with polar H₂O)
- as more non-polar, more hydrophobic, more absorption (i.e. increase in aliphatic carbon chain length for carboxylic acids results in increased absorption)
- number and type of substituent atoms or groups on organic carbon structure affects extent of absorption

Dr. Tobiason; Physical & Chemical treatment processes

Factors affecting Sorption

1) Sorbents properties

2) Sorbate properties

3) Solution properties

CEE 697z - Lecture #2

Solution properties (cont.)

рΗ

- affects ionization of sorbate and surface of sorbent
- in general, as pH decreases, sorption increases
- uncharged sorbates adsorb more than charged (ionized) sorbates

Ionic Strengh

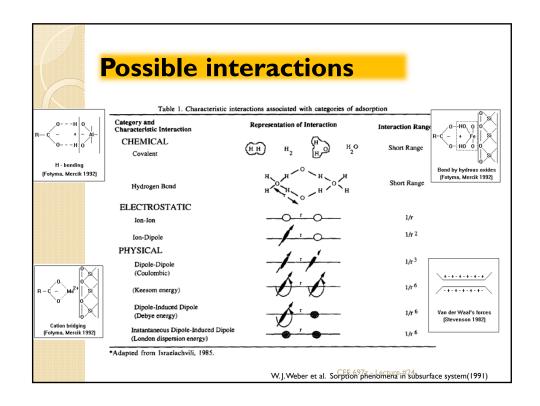
- in general, more sorption as ionic strength increases
- better adsorption of DOC as increase Ca⁺², Na⁺

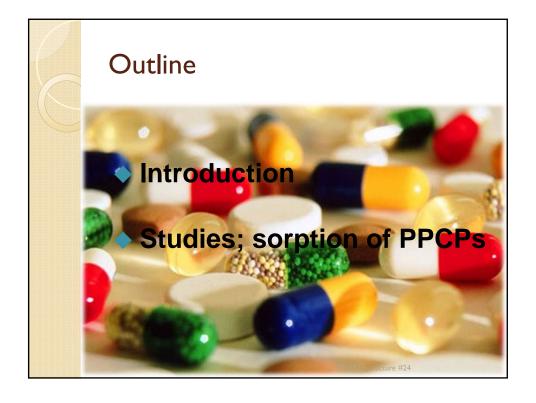
Temperature

- extent of sorption increases as temperature decreases
- rate of sorption decreases as temperature decreases

Dr. Tobiason; Physical & Chemical treatment processes

Solution properties


Competing sorbates


- sorbate with stronger affinity (binding) for surface can displace sorbate with weaker affinity
- most real waters involve mixtures of sorbates
- changes in mixture can affect sorption
- for a heterogeneous sorbate measured by a composite parameter such as TOC (or COD), extent of sorption can depend on initial concentration used in batch experiment

Presence/absence of dissolved oxygen

- sorption capacity increased in presence of O₂(aq)

Dr. Tobiason; Physical & Chemical treatment processes

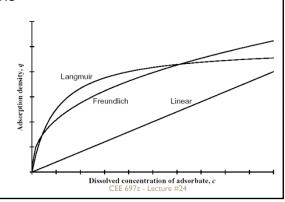
Sorption coefficient (K_d)

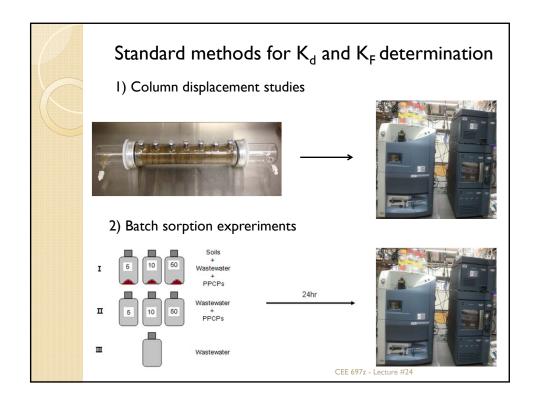
- The ratio of the concentrations of a compound in the sorbent phase and in the solution phase at equilibrium; Linear isotherm

$$K_{d} = C_{\text{sorbed}}/C_{\text{dissolved}}$$
$$q = k_{\text{lin}}c$$

$$\begin{split} &C_{sorbed}: \ concentration \ of \ solbate \ in \ sorbent \ (\mu g/kg) \\ &C_{dissolved}: \ concentration \ of \ solbate \ in \ solution \ (\mu g/L) \end{split}$$

q =Mass adsorbed / Mass of adsorbent


Other isotherms


Freundlich

$$q = k_f c^n$$

Langmuir

$$q = q_{\text{max}} \, \frac{K_L c}{1 + K_L c}$$

Factors affecting determination of sorption coefficient

- 1. Phases associated sorption
- Solid phase
- PPCPs in aqueous phase
- $\ensuremath{\mathsf{DOM}}$ (Dissolved organic Matter) in aqueous phase
- 2. PPCPs properties
- Hydrophobic PPCPs
- Non-hydrophobic ionisable PPCPs

K_d in soils

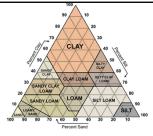


Table 4. Sorption coefficients for gemfibrozil to sand, a sandy loam, and a silt loam soil

	Freun	dlich equ	ation	Linear equation			
Sorbent	K_{f}	1/ <i>n</i>	r ²	$K_{\rm d}$	r^2	Log Koc	
Sand	0.24	0.68	0.96	0.12	0.94	2.08	
Sandy loam	1.31	0.83	1.00	1.06	1.00	1.91	
Silt loam	12.38	1.37	0.97	9.2	0.99	2.57	

Yu Fang (2011)

Solute chemical nan	es pK _a	S _w (mg/L)	$\log K_{\rm ow}$	MW	Sorbent description	pH	TOC (%)	$K_{\rm d}~({\rm mL/g})$	Reference
Bisphenol A	9.59-10.2	120-	3.4	228.3	Sediment	7.15-7.71	2.06-6.29	3.7-11.5a	Zeng et al. 2006
(BPA)		300			Soil	8.9	1.9	2.75a	Ying et al. 2003
					Soil	6.9-8.13	0.92 - 2.11	4.94-8.62a	Fent et al. 2003
					Minerals	4-10		12.3-212.8a	Shareef et al. 2006
					Zeolite			11.2ª	Tsai et al. 2006a
17β-Estradiol (E2)	N/A	3.6	3.1 to 4.0	272.3	Soil	7.2–7.6	0.8-1.4	16.0-29.6ª	Stumpe and Marschner 2007
(52)					Soil		3.3-9.2	80.2-455.5a	Casey et al. 2003
					Soil	7.9	9.2	84.41	Casey et al. 2005
					Soil	1.5	7.2	3.6-83.2	Lee et al. 2003
					Minerals			4.9-177.2	Van Emmerik et al. 2
					Minerals		0	11.3-40 ^a	Casev et al. 2003
17α-Ethinyl	10.4	11-44	4.15	296.4	Sludge	7.1	27.7	584	Andersen et al. 2005
Estradiol (EE2)	10.4	11-44	4.13	290.4	Soil	7.1	0.95-1.88	53.7–97.7ª	Yu and Huang 2005
Estadioi (EE2)					Soil	8.9	1.9	6.98ª	Ying et al. 2003
					Soil	6.4-7.3	0.22-2.91	2.33-23.4	Lee et al. 2003
					Minerals	4-10	0.22-2.91	41.4-744.9ª	Shareef et al. 2006
Carbadox (CBX)	N/A	N/A	-1.40 to	262	Soil	4.4-7.3	0.22-2.39	1.4-154	Strock et al. 2005
Carbadox (CBA)	IN/A	N/A	0.15	202	Kaolinite	4.63	0.22-2.39	19.8	Strock et al. 2005 Strock et al. 2005
Desoxycarbadox	N/A	N/A	1.9 to 2.1	230	Soil	4.3-6.9	0.36-2.39	7,07–62.4ª	Strock et al. 2005
	N/A	N/A	1.9 to 2.1	230			0.36-2.39		
(DCBX)	2 2 7 7	221	-1.97 to -		Clay	4.67		7.6	Strock et al. 2005
Tetracycline (TC)	3.3; 7.7; 9.7	231- 52000	-1.97 to - 0.47	444.4	Soil	3.8-7.5	0.48-2.91	3102- 312447	Sassman and Lee 200
					HS	7		1.0-5.7E4	Pils and Laird 2007
					Al or Fe oxide	5.3		41.8–133 ^a	Gu and Karthikeyan 2005a
					MMLT	5.5		865 ^a	Figueroa et al. 2004
					Clay	7		2.2-6.5E4	Pils and Laird 2007
Oxytetracycline (OTC)	3.27; 7.32; 9.11	300	-1.97 to - 0.45	460	Soil	3.8-7.5	0.48-2.91	1229- 269097	Sassman and Lee 200
								950-7200	ter Laak et al. 2006a
					MMLT	1.5-11		2691- 33884 ^a	Kulshrestha et al. 200
Sulfathiazole (STZ)	2.4; 7.1	590	1	255.3	MMLT	4-7.5		0.5-1.5	Kahle and Stamm 200
(012)	,				Ferrihydrite	5.3-7.2		3-20	Kahle and Stamm 200
					Soil			0.4-3.5	ter Laak et al. 2006a
Sulfapyridine (SPY)	8.4	270	0.35	249.3	Whole soil	7	1.61	1.75ª	Thiele-Bruhn et al. 20
					Mineral			4	Gu and Karthikeyan 2005b
Sulfamethazine (SMZ)	2.3; 7.4	1500	0.8	278.33	Soil Mineral	7.2-7.5	0.94-1.8	2.4-4.2 ^a 7.8-14.2 ^a	Accinelli et al. 2007 Gao and Pedersen 200
p-Aminobenzonic ac	id 4.9	6100	0.83	137.1	Soil	7	1.61	0.47 ^a	Thiele-Bruhn et al. 20
	iu 4.9	6100	0.83	137.1					
(pABA)					Coarse silt	6.4	0.1	1.82ª	Thiele-Bruhn et al.

Sorption between PPCPs (VPs) and DOM

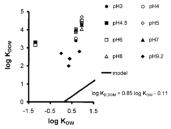


FIGURE 3. Plot of the log $K_{\rm aLDOM}$ data against hydrophobicity expressed as log $K_{\rm ow}$. The solid line is a regression line obtained for a wide range of neutral organic chemicals (32).

Johannes Tolls (2001)

TABLE 3. Data on Sorption of VPs to DOM^a

compound	corollary information	K _d (L/kg)	K₀c (L/kg)	ref
tetracycline	AHA, pH adjusted to 4.55, ED	2 060	6 059	24
-	pH adjusted to 6.14, ED	1 430	4 206	24
oxolinic acid	AHA, pH range from 3 to 8, SPME	935-8 350	7 400-31 600	<i>25</i>
flumequine	AHA, pH range from 3 to 8, SPME	2 516-10 750	2 750-24 500	<i>25</i>
sarafloxacine	AHA, pH range from 3 to 8, SPME	18 700-52 700	55 000-155 000	<i>25</i>
enrofloxacin	HAS, pH 9.2, EM ^b	110		26
ciprofloxacin	HAS, pH 9.2, EM ^b	250		<i>26</i>
norfloxacin	HAS, pH 9.2, EM ^b	500		26
danofloxacin	HAS, pH 9.2, EM ^b	630		26
ofloxacin	HAS, pH 9.2, EM ^b	100		26
enro-CO ₂	HAS, pH 9.2, EM ^b	250		26

 a AHA and HAS stand for Aldrich humic acid and for humic acid from a soil, respectively. The experimental techniques employed were equilibrium dialysis (ED), solid-phase microextraction (SPME), and electrophoretic mobility. K_d and K_{∞} are the sorption and organic carbon-normalized sorption coefficients, respectively. b Organic carbon content of humic acid is not reported.

CEE 697z - Lecture #24

Hydrophobicity (Cont.)

- Karickhoff (1979) reported that K_d of environmental chemicals are strongly correlated to the organic carbon content $(f_{oc}(\%))$
- During(2002), Bowman(2002), Holthaus(2002), Loffredo(2006), Maskaoui(2007), and Uslu(2008) reported that both Freundlich sorption parameter $K_{\rm F}$ and Linear sorption parameter $K_{\rm d}$ of PPCPs are found to be positively related to organic carbon content
- Most of PPCPs are moderately hydrophobic compounds (Bo Pan;2009)

 K_{oc} : organic carbon partition coefficient (L/kg) K_d : linear sorption coefficient (L/kg)

 $K_{OC} = \frac{K_d}{f_{aa}}$

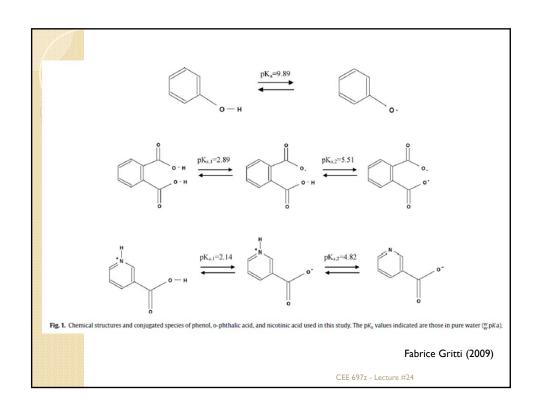
f_{oc}: fraction of organic carbon (%)

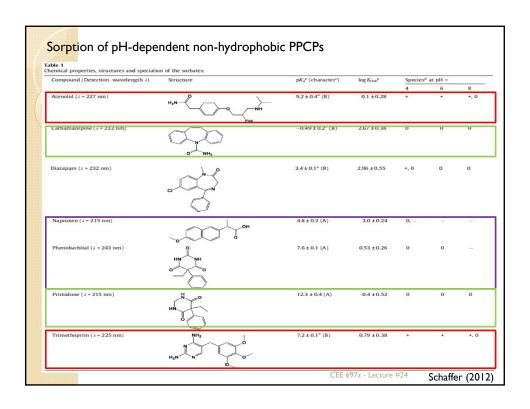
Hydrophobicity (Cont.)

- Franco(2008) and Karickhoff (1979) reported the K_{oc} is correlated to the K_{ow} (Octanol-water distribution coefficient)

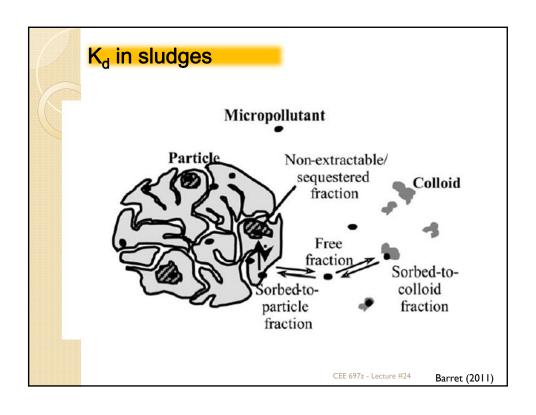
Log K_{ow} = positive : Hydrophobic
 Log K_{ow} = negative : Non-hydrophobic

- Sablijic (1995) found that the $K_{\rm oc}$ for non-hydrophobic and ionisible compounds is pH-dependent
- And, Sablijic (1995) determined the correlation between the K_{oc} and the K_{ow} depending on physical and chemical properties of organic compouns


CEE 697z - Lecture #24

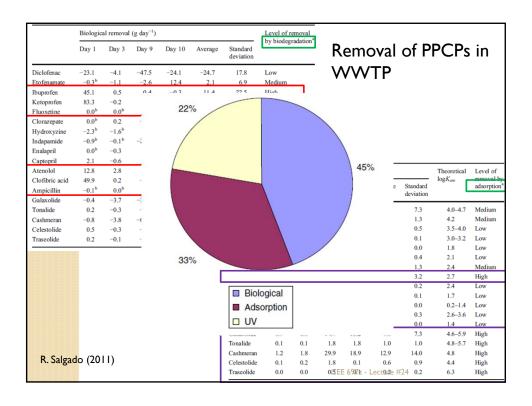

Table 5. List of all derived QSAR models for soil sorption with their chemical domain	ins.
---	------

Model #	Regression Equation	Chemical Domain
1	$\log K_{\infty} = 0.70 + 0.52^{*1}\chi$	Predominantly hydrophobics
2	$\log K_{\infty} = 0.10 + 0.81*\log K_{\infty}$	Predominantly hydrophobics
3	$\log K_{\infty} = 1.02 + 0.52 \log K_{ow}$	Nonhydrophobics
4	$\log K_{oc} = 0.90 + 0.63 * \log K_{ow}$	benzonitriles, & nitrobenzenes
5	$\log K_{oe} = 1.09 + 0.47*\log K_{ow}$	Acetanilides, carbamates, esters, phenylureas, phosphates, triazines, triazoles, & uracils
6	$\log K_{\infty} = 0.50 + 0.47*\log K_{\infty}$	Alcohols & organic acids
7	$\log K_{oc} = 1.12 + 0.40*\log K_{ow}$	Acetanilides
8	$\log K_{oc} = 0.50 + 0.39*\log K_{ow}$	Alcohols
9	log K _{vc} = 1.25 + 0.33*log K _{vw}	Amides
10	$\log K_{oc} = 0.85 + 0.62*\log K_{ow}$	Anilines
11	$\log K_{oc} = 1.14 + 0.365* \log K_{ow}$	Carbamates
12	$\log K_{OC} = 1.92 + 0.38*\log K_{OW}$	Dinitroanilines
13	$\log K_{oc} = 1.05 + 0.49*\log K_{ow}$	Esters
14	$\log K_{oc} = 0.55 + 0.77*\log K_{ow}$	Nitrobenzenes
15	$\log K_{OC} = 0.32 + 0.60*\log K_{OW}$	Organic acids
16	$\log K_{oc} = 1.08 + 0.57*\log K_{ow}$	Phenois & benzonitriles
17	$\log K_{oc} = 1.05 + 0.49 \log K_{ow}$	Phenylureas
18	$\log K_{QC} = 1.17 + 0.49 + \log K_{QW}$	Phosphates
19	$\log K_{oc} = 1.50 + 0.30*\log K_{ow}$	Triazines
20	$\log K_{oc} = 1.405 + 0.47*\log K_{ow}$	Triazoles


Aleksandar Sabljic (1995)

emical properties, structures and speciation Compound (Detection, wavelength λ)	on of the sorbates. Structure	pK _a ^a (character ^c)	log Kow ^a	Species	at pH =	
2 2 2			-	4	6	8
Atenolol (λ = 227 nm)	H ₂ N	9.2 ± 0.4° (B)	0.1 ± 0.28	+	+	+, 0
Carbamazepine (λ = 232 nm)		$-0.49 \pm 0.2^{\circ}$ (B)	2.67 ± 0.38	0	0	0
Diazepam (λ = 232 nm)	O NH ₂	3.4 ± 0.1° (B)	2.96 ±0.55	+, 0	0	0
Naproxen (λ = 215 nm) Phenobarbital (λ = 243 nm)		4.8 ± 0.3 (A)	3.0 ±0.24 0.53 ±0.26	0. –	-	-
Primidone (λ = 215 nm)	HN NH	12.3 ± 0.4 (A)	0.4 ±0.52	0	o	0
Trimethoprim (λ = 225 nm)	NH ₂	7.2 ± 0.1° (B)	0.79 ± 0.38		+	+, 0

	Linear		Freundlich			Langmuir			
Character (charge)	K _d	STD	K _F	K _L	C _{max}	R ²	n	R ²	Н
Base (N)	0.40	0.55	0.97	0.34	5.62	0.88	0.37	0.97	-
Acid (N)	050	0.16	0.68	0.02	32.93	0.98	0.87	0.97	-
Base (+)	7.93	4.01	11.00	0.08	189.01	0.99	0.76	0.99	-0.66
Base (+)	17.86	6.10	20.00	0.09	221.17	0.98	0.87	0.99	-0.30
Acid (-)	1.86	1.27	3.38	0.07	68.68	0.97	0.70	0.99	4.46
Acid (-)	425	1.61	6.20	0.03	218.78	1.00	0.79	0.99	13.81
■ Basi	c comp		_	u ,	ng interac				(2014)
• Acid	lic com	•		υ,		•		n surface	
	Base (N) Acid (N) Base (+) Base (+) Acid (-) Acid (-) kg ⁻¹ ; K _F expressed in ositively charged (-)	Character (charge) Base (N) Acid (N) 0.50 Base (+) 7.36 Acid (-) 1.86 Acid (-) 4.25 kg ⁻¹ ; K _F expressed in µg ¹⁻ⁿ L ⁿ kg ositively charged (-): Negatively charged Basic comp	Character (charge)	Character (charge) K _d STD K _F Base (N) 0.40 0.55 0.97 Acid (N) 0.50 0.16 0.68 Base (+) 7.93 4.01 11.00 Rake (+) 17.86 6.10 20.00 Acid (−) 1.86 1.27 3.38 Acid (−) 4.25 1.61 6.20 kg⁻¹; K _F expressed in µg¹⁻ n Ln kg⁻¹; K _L expressed in Lµg⁻¹; C _{max} expositively charged (−): Negatively charged. ■ Basic compounds: Highest k charged su	Character (charge)	Saze (N)	Size Character (charge) K_d STD K_F K_L Cmax R^2	Character (charge) K _d STD K _F K _L C _{max} R ² n Base (N) 0.40 0.55 0.97 0.34 5.62 0.88 0.37 Acid (N) 0.50 0.16 0.68 0.02 32.93 0.98 0.87 0.76 Base (+) 7.93 8.00 0.09 0.00 0.09 0.09 0.76 Base (+) 17.86 6.10 0.00 0.09 0.09 0.91.17 0.98 0.87 Acid (-) 1.86 1.27 3.38 0.07 68.68 0.97 0.70 Acid (-) 4.25 1.61 6.20 0.03 218.78 1.00 0.79 kg ⁻¹ ; K _F expressed in µg ¹⁻ⁿ L ⁿ kg ⁻¹ ; K _L expressed in Lµg ⁻¹ ; C _{max} expressed in µg kg ⁻¹ . STD: Standard deviation. HI: Hysteresis Index. ositively charged (-): Negatively charged. Basic compounds: Highest K _d by strong interactions with negative charged surface	Character (charge) K _d STD K _F K _L C _{max} R ² n R ²



K_d in sludges Location TOC/TSS COD/TSS Primary After Grit 35% 146%

Table 1.3: Sorption coefficients for sludge of municipal wastewater treatment, measured in batch experiments and octanol-water partitioning coefficients (according to Ternes *et al.* 2004).

	Primary sludge K_d [L kgss ⁻¹]	Secondary sludge K_d [L kgss ⁻¹]	$\log K_{OW}$
Acidic pharmaceuticals	I.	II.	III.
Diclofenac	459±32	16.0±3.1	4.6
Ibuprofen	(< 20)	7.1±2.0	3.5
Clofibric acid	(< 30)	4.8±2.5	2.57
Neutral pharmaceuticals			
Ifosfamide	21.8±13.8	1.4±0.4	0.86
Cyclophosphamide	55.4±19.6	2.4±0.5	0.63
Carbamazepine	 (< 20)	1.2±0.5	2.45
Diazepam	43.9±26.1	21.1±7.6	2.82
Musk fragrances			
Galaxolide (HHCB)	4919±2073	1807±534	5.9
Tonalide (AHTN)	5299±1905	2372±958	5.7
Iodinated contrast media			
Iopromide	 (<5)	11±1	-2.33
Estrogens			
17α–Ethinylestradiol	278±3	349±37	3.9
		CEE 697z - Lectur Homa	s A. Ternes (20

15

