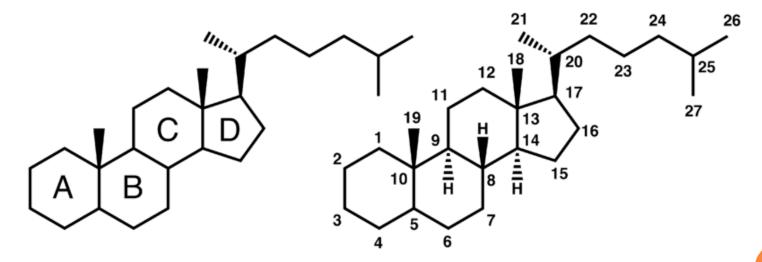
Print version

MICROBIAL BIODEGRADATION OF STEROID HORMONES CEE 697z Organic Contaminants October 23, 2014 Wenye Camilla Kuo-Dahab

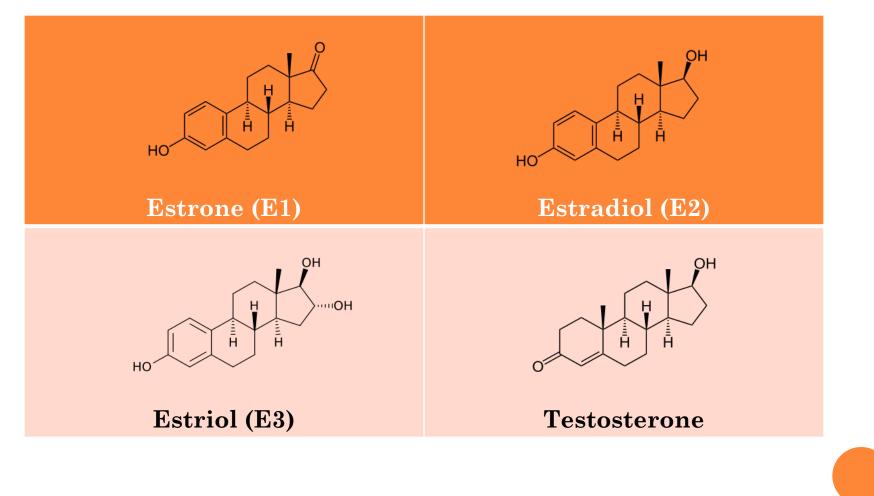
BACKGROUND

- Estrogens, naturally or synthetically produced, are steroidal hormones
- Regulate a wide range of important biological functions in humans and animals
- All natural steroids are synthesized from Cholesterol
- Steroid hormones interact with intracellular receptors, forming complexes that can increase or decrease transcription of specific genes

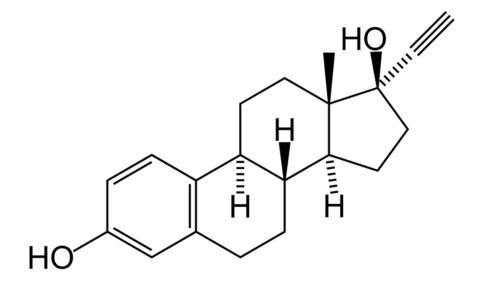
CHOLESTEROL


Cholesterol is required to build and maintain membranes; it modulates membrane fluidity over the range of physiological temperatures. The hydroxyl group on cholesterol interacts with the polar head groups of the membrane phospholipids, while the bulky steroid and the hydrocarbon chain are embedded in the membrane, alongside the nonpolar fatty-acid chain of the other lipids. Within the cell membrane, cholesterol also functions in intracellular transport, cell signaling, and nerve conduction. Within the cells, cholesterol is the precursor molecule to several biochemical pathways. Cholesterol is an important precursor molecule for the synthesis of vitamin D and steroid hormones, including cortisol and aldosterone, as well as progesterone, estrogens, and testosterone, and their derivatives.

STEROIDS


• Consist of 4-cycloalkane rings

- 3-cyclohexane (A,B,C)
- 1-cyclopentane (D)


• Methyl groups at C-10, C-13, C-17

NATURAL ESTROGENS

Synthetic Estrogen

Ethinylestradiol (EE2)

BIODEGRADATION

• Process by which microbial organisms transform or alter (through metabolic or enzymatic action) the structure of chemicals introduced into the environment (US EPA, 2010)

• **However,** biodegradation products can be more harmful than the parent substance (International Union of Pure and Applied Chemistry, 1993)

THREE MAIN CATEGORIES OF PROCESSES THAT HAVE BEEN RESEARCHED

- 1. Physical Processes
 - Sorption onto Activated sludge
 - Sorption onto adsorbent materials
 - Membrane filtration
- 2. Advanced Oxidation Processes (AOP)
 - Photolysis
 - Heterogeneous photocatalysis
 - Strong oxidizers
 - Combination of UV and strong oxidizers
 - Sonolysis
- **3. Biological Processes**
 - Bacteria and Archaea (from AS and anaerobic sludge)
 - Microalgae
 - Enzymes

Removal of Estrogens during Biological Treatment

• Sorption to biosolids

• Biosolids may be used for land application which may become a long-term source

Biodegradation by microorganisms

• Transformed products may still possess estrogenicity

WWTP ESTROGEN REMOVAL

- E1: 19-94%
- E2: 76-92%
- EE2: 83-87%

• (Ternes et al., 1999a; Johnson and Sumpter, 2001) For activated sludge plants

• Estradiol Equivalents: 28% (Svenson et al.,2003) For Trickling Filters

• Higher removal efficiencies for membrane bioreactor and fixed bed reactor systems in comparison to AS (Clara et al., 2005; Joss et al., 2004)

VARIATION BETWEEN WWTPS

- Differences in biological (fixed film or suspended) growth and other processes
- Operating conditions
 - **SRT** and HRT
- Geological locations of WWTPs
- Influent concentrations of estrogens
- Adsorption vs. biodegradation

44	
Table 4	

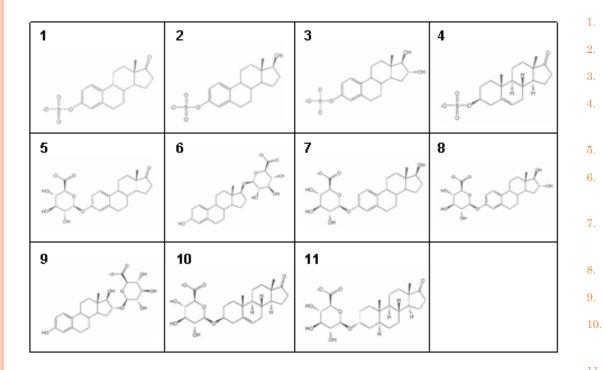
Biodegradation processes used for estrogens (E1, E2, E3 and EE2) elimination from water.

E1, E2, E2STPAerobic batch experiments containing a ditted stury of AS from a real STP in GermanyWhile in contact with AF 2 mas outdood in E1, E2, E3, E32E1, E2, E3, E42ASGrab samples from influents and efficient, filtered before analysis, Etrogens were erroridge	Reference
E1, E2, E3, E2A5Grab samples from influents and efficients, filtered before analysis. Estogens, the caractering activiting and industrial waterwater bitter and one industrial plantContext and anse of 5 more found in the rest caractering activity for an municipal term the caractering activity for an municipal and industrial waterwater bitter and one industrial plantHigh concentrations of 2 were found in the municipal ST from the same of 5 more found in the formation the same of 5 more found in the formation of the same of the sa	et al. (1999b)
E1, E2, E3, EE2 AS Grab samples from influents and effluents, influence there analysis. Strogover, analysis. Strogov	л
¹⁴ C-Labeled estrogenic compounds Municipal and industrial wastewater plants and one industrial plant Dramuci differences were observed: in the restrogenic dustrial plant E2 ministration was 70–805, during the 24 h, while for the industrial plant E2 ministration was 70–805, during the 24 h, while for the industrial plant E2 ministration was 70–805, during the 24 h, while for the industrial plant E2 ministration was 70–805, during the 24 h, while for the industrial plant E2 ministration was 70–805, during the 24 h, while for the industrial and rural environment E1, E2, EE2 Waters from English rivers in urban/ industrial and rural environment E2 splits in the range 20 ng L ⁻¹ –500 mg L ⁻¹ Oxidation of E2 ns. with ball was the further description was then further description was then incubated with anacobic bed sediments E1, E2, EE2 STP Municipal STP in Germany with an KS system for nirification and dentrification: Cas = 100 ng g ⁻¹ All strogen comentations decreased for nirification and dentrification: Cas = 100 ng g ⁻¹ He elimination efficiency of the nature was reduced by more than 905 - E1 and E2 weekeed and in the singent was degraded only in the nirififying the transforming E2 no strongenic to be degraded in the AS system while E2C was degraded only in the singent was reduced by more than 905 - E1 and E2 weekeed and industrial was reduced by more than 905 - E1 and E2 weekeed and in and system while E2C was week and be degraded only in the nirififying the singent was the speriment was reduced by more than 905 - E1 and E2 weekeed to be degraded only in the singent was singlighted to be degraded only in the singent was singlighted to be degraded only in the single single single single single single single single single single single single single single single sin	et al.
E2. Nitrifying AS Ammonium oxidised by the sludge at a rate of or intromounds, that were not further identified in the formation or test is alos or entropounds, that were not further identified in the formation or test is alos or entropounds, that were not further identified in the formation or test is alos or entropounds, that were not further identified in the formation or test is alos or entropounds, that were not further identified in the formation or test is alos or entropounds, that were not further identified in the formation or test is alos or entropounds, that were not further identified at 20 °C. E van is the further degraded at 20 °C. E van is the further degraded at 20 °C. E van is the further degraded at 20 °C. E van is the further degraded at 20 °C. E van is the further degraded at 20 °C. E van is the further degraded at 20 °C. E van is the nore resistant to biodegradation, with half-lives in the orientification: C est. = 100 ng g ⁻¹ E1, E2, EE2 STP Municipal STP in Germany with an AS system white effect acceled distropend of the nature extrement C est. = 100 ng g ⁻¹ The elimination efficiency of the nature extrement or the sludge and an areobic conditions. Servition the fall acceled only in the initifying tank E1, E2, EE2 AS Batch experiments The removal or steroid estrogens with excees sludge with mercury(II) sulphate. E2, EE2 Activated and inactivated sludge Cert. = 2.50 × 10 ⁻¹ - 50 mg L ⁻¹ , hareivation or integrating advisor infinity or all advorption affinity or the sludge with mercury(II) sulphate. The terospect accel, within 70 d from 1 to 62 cog g ⁻¹ . E2, EE2 Activated and inactivated sludge Cert. = 2.50 × 10 ⁻¹ - 50 mg L ⁻¹ ,	et al. (2000)
E1, E2, EE2 Waters from English rivers in urbani industrial and rural environment E2 spikes in the range 20 ng L ⁻¹ -500 mg L ⁻¹ - Microorganisms in river water samples were capable of transforming E2 to E1, with half- lives of 0.2-9 d when incubated at 20 °C. E was then further degraded ato when incubated at 20 °C. E was then further degraded ato when incubated with anaerobic bed sediments E1, E2, EE2 STP Municipal STP in Germany with an A5 system - All estrogen concentrations decreased for nitrification and denitrification; Cest. = 100 ng g ⁻¹ E1, E2, EE2 STP Municipal STP in Germany with an A5 system - All estrogen concentration decreased for nitrification and denitrification; Cest. = 100 ng g ⁻¹ E1, E2, EE2 AS Batch experiments - The elimination efficiency of the nature storgens (E1 and E2) exceeded 58% and EE was reduced by more than 90%. E1, E2, EE2 AS Batch experiments - The reunal of storgen sing with excess storid estrogens with excess storid estrogens with excess storid estrogens in STP: compared to biologgradation E2, EE2 Water sediments, groundwater Aerobic and anaerobic conditions. Sorption test performed at room temperature ancerbic conditions; under aerobic conditions of the sludge with mercury(II) sulphate. - The reunal of estrogen sing anerobic conditions of the estrogen dependent on proval obach earogens was highlighted - The reunal efficiency of E1 and E2, our estrogen sing highlighted - The reunal efficiency of E1 and E2, our estrogen dependent on proval oconditions E2, EE2 Nitr	(2000)
E1, E2, EE2 STP Municipal STP in Germany with an AS system for nitrification and denitrification: $C_{est.} = 100 \text{ ng g}^{-1}$ All estrogen concentrations decreased gradually along the treatment E1, E2, EE2 AS Batch experiments - The elimination efficiency of the nature estrogens (E1 and E2) exceeded 98% and EE was reduced 90% and EE E1, E2, EE2 AS Batch experiments - The elimination efficiency of the nature estrogens (E1 and E2) exceeded 98% and EE was reduced 90% and EE E2, EE2 AS Batch experiments - The renoval of steroid estrogens with excess sludge was estimated to be only 15–1.8%, making sorption not important for the fate of steroid estrogens in STB's compared to biodegradation E2, EE2 Water sediments, groundwater Aerobic and anaerobic conditions. Sorption test performed at room temperature test performed strogens mas flow conditions for pro- the sludge with mercury(II) sulphate. - The estudied estrogens had modest sorption affinity of the subge with mercury(II) sulphate. E1, E2, E12 Municipal STPs Various redox conditions were performed in batch experiment - Both estrogens had an efficiency removal of the compounds to the adsorbent and the adsorbent and the adsorbent and II and To PC > 90% <t< td=""><td>- et al. 1 (2002) h</td></t<>	- et al. 1 (2002) h
E1, E2, EE2 AS Batch experiments - The removal of steroid estrogens with exces E1, E2, EE2 AS Batch experiments - The removal of steroid estrogens with exces E2, EE2 Water sediments, groundwater Aerobic and anaerobic conditions. Sorption - In the rangelow ng L ⁻¹ to high µg L ⁻¹ , K wa E2, EE2 Water sediments, groundwater Aerobic and anaerobic conditions. Sorption - The studied estrogens had modest sorption E2, EE2 Activated and inactivated sludge Cest. = 2.50 × 10 ⁻⁵ -50 mg L ⁻¹ . Inactivation of - The studied estrogens had modest sorption of the sludge with mercury(II) sulphate. E1, E2 Municipal STPs Various redox conditions were performed in batch experiment - Song L ⁻¹ . Inactivation of the estrogens had an efficiency removal of sorption affinity or the ompounds to the adsorption affinity or the ompounds to the adsorbent and the adsorption was found to be dependent on pl >90% E1, E2, E3, EE2 Nitrosomas europaea from nitrifying AS Batch experiment Cest = 0.4 mg L ⁻¹ - The importance of aerobic conditions or the removal of the estrogens was highlighted E1, E2, E3 STPs effluents Laboratory-scale treatment plants were operated at four different STI's characteristic approx. 26 d'; Ti nithe lab-scale reactors varied - This work shows the dependency of the elimination from wastewater of the natural for wastewater of the natural approx. 26 d'; Ti nithe lab-scale reactors varied - X	Andersen et al. al (2003) 2
E2, EE2Water sediments, groundwaterAerobic and anaerobic conditions, Sorption test performed at room temperature test performed at room temperatureIndependent of water concentration - The studied estrogens had modest sorption - The rows no degradation of estrogens unde anaerobic condition; under aerobic condi- tion, EE2 concentration decreased, within 70 d from 1 to 0.62 mg gr1 the sludge with mercury(II) suphate.There was no degradation of estrogens unde anaerobic condition; or d from 1 to 0.62 mg gr1 the sludge with mercury(II) suphate.There was no degradation of estrogens unde anaerobic condition; to d from 1 to 0.62 mg gr1 the sludge with mercury(II) suphate.E1, E2Municipal STPsVarious redox conditions were performed in batch experimentBoth estrogens had an efficiency removal or >90%E1, E2, E3, EE2Nitrosomas europaea from nitrifying ASBatch experiment $C_{ext} = 0.4 \text{ mg L}^{-1}$ Batch experiment $C_{ext} = 0.4 \text{ mg L}^{-1}$ E1, E2, E3STPs effluentsLaboratory-scale treatment plants were operated at four different SKTs characteristic approx.26 d; T in the lab-scale reactors variedThe submater on her SKT 10 °C the strogen E2, E1 and E3, on the SKT 10 °C the addition of allylthiourea reduced the elimination from wastewater of the natural for E3, 0.056 h^{-1} for E1 and 13 h^{-1} for E2 the strogen E2, E1 and E3, on the SKT 10 °C	et al. of (2005)
 E2, E2 Activated and inactivated sludge Csst. = 2.50 × 10⁻⁵50 mg L⁻¹, In activation of - It was observed a high adsorption affinity of the sludge with mercury(II) sulphate. E1, E2 Municipal STPs Various redox conditions were performed in batch experiment Various redox conditions were performed in batch experiment Both estrogens had an efficiency removal or both estrogens was highlighted or the schement of a leaving of a conditions E1, E2, E3, EE2 Nitrosomas europaea from nitrifying AS E1, E2, E3 STPs effluents Laboratory-scale treatment plants were operated at four different SRTs characteristic for wastewater of the nature of approx. 26 d; T in the lab-scale reactors varied At SRT 10 °C higher than 10 d nearf 	Ying et al.
E1, E2 Municipal STPs Various redox conditions were performed in batch experiment - Both estrogens had an efficiency removal of batch experiment E1, E2, E3, EE2 Nitrosomas europaea from nitrifying AS Batch experiment $C_{ext} = 0.4 \text{ mg L}^{-1}$ - The importance of aerobic conditions for th removal of the estrogens was highlighted E1, E2, E3, EE2 Nitrosomas europaea from nitrifying AS Batch experiment $C_{ext} = 0.4 \text{ mg L}^{-1}$ - The addition of allylthiourea reduced th estrogen degrading activity: first order reaction kinetics were: 0.035 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} for E1 and 1.3 h^{-1} for E2, 0.030 h^{-1} for E3, 0.056 h^{-1} fo	(2004)
E1, E2, E3, EE2 Nitrosomas europaea from nitrifying AS Batch experiment $C_{ext} = 0.4 \text{ mg L}^{-1}$ - The addition of allylthiourea reduced the estrogen degrading activity; first order reaction kinetics were: 0.035 h ⁻¹ for EE 2, 0.030 h ⁻¹ for E3, 0.056 h ⁻¹ for E2, 0.056 h ⁻¹ for E2 E1, E2, E3 STPs effluents Laboratory-scale treatment plants were operated at four different SRTs characteristic for wastewater treatment design - 1, 5, 13 and approx.26 d; T in the lab-scale reactors varied - This work shows the dependency of the altimation from wastewater of the natural approx.26 d; T in the lab-scale reactors varied	of Joss et al. (2004) e
E1, E2, E3 STPs effluents Laboratory-scale treatment plants were - This work shows the dependency of th operated at four different SKTs characteristic elimination from wastewater of the natural for wastewater treatment design - 1, 5, 13 and approx.26 d; T in the lab-scale reactors varied - At SRT 10 °C higher than 10 d nearl	- (2004)
between 20,3 and 27.4 °C complete removal of those compounds was	(2005) y

Estrogens	Agent and/or Matrix	Experimental Conditions	Conclusions	Reference
			achieved and effluent concentrations in the	
			limit of detection range were measured	
E1, E2, E3, EE2	STP and AS	Effluents of STPs, included primary chemical	- The highest estrogen removal was observed	
		treatment only, submerged aerated filter,	in the effluent from a STP using primary treatment only	et al.
		oxidation ditch, AS and TF combined with AS	- EE2 was detected only in two effluents of	(2005)
			STPs	
E2	AS from a aeration	E2 at 10, 30 and 50 μ g L ⁻¹ ; temperatures of 5,	- The removal of E2 was found to be strongly	Li et al.
	basin of a STP	20 and 35 °C; microbial population densities	dependent on influent concentrations of E2,	
		of 1750, 875 and 435 mg L ⁻¹	microbial population densities and	
			temperatures	
E2, EE2	Cultures established from lake water and sediments	Methanogenic, sulphate, iron and nitrate	 E2 was transformed to E1 No anaerobic degradation of EE2 occurred 	Czajka and
	water and sediments	reducing anaerobic conditions $C_{est.} = 5 \text{ mg L}^{-1}$		(2006)
		est - 5 mg t	vears)	(2000)
E1, E2	Municipal sewage and AS	HRT: 40-48 h; SRT: 30-40 d; MLSS:	- E2 and E1 adsorbed on the sludge were	Suzuki and
		1500-2000 mg L ⁻¹	decomposed in 4 h	Maruya ma
			- Adsorption and decomposition of estrogens	(2006)
			in contact with AS were inactivated by ster-	
EF2	Nitrifying AS	Corption and biodegradation were performed	ilizing the sludge The relationship between biomass particle	Vi et al
662	Niu liyilig AS	Sorption and biodegradation were performed in lab-scale bioreactors	 The relationship between biomass particle size, hydrophobicity and sorption capacity 	
		in lab-state bioreactors	were assessed	(2000)
			- Biodegradation of EE2 was more important	
			than biosorption under the condition of high	
			initial ammonia concentration (>48 mg L ⁻¹)	
E1, E2, EE2	Anaerobic sludge	Raw sewage sludge used in this work was		Carballa
		collected from a STP located in Spain	compounds with the higher removal efficiencies	et al.
			 In general, no influence of SRT and temper- 	(2007)
			ature on PPCPs removal was observed	
EE2	MBR	EE2 in two different labelled radioactive	- Radioactivity mainly remained sorbed in the	Cirja et al.
		forms MBR operated with a SRT of 25 d	reactor - removal of 80%	(2007)
			- The elimination pathway did not involve the	
			removal of the ethinyl group from EE2	
P1 P2 PP2	Mitelfale and shared also dee	AC Come CDD Manimum atoms of	molecule	Design of the
E1, E2, EE2	Nitrifying activated sludge	AS from SBR. Maximum storage of three weeks at 5–8 °C	 The involvement of ammonia mono- oxygenase in the biotransformation of EE2 	
		tillee weeks at 5-8 °C	into EE2-OH was studied	(20070)
			- The EE2 biological stability was compared to	
			that of E1	
EE2		Nitrifying bioreactor; HRT 0.75 d and SRT 20 d	- A linear relationship between nitrification	
	culture extract		and EE2 removal in enriched nitrifying	Harper
E2. EE2	AS	For each batch even evine at two yes store were	cultures was found - Potential relationships between availability	(2007) Dutanak
E2, EE2	AS	set up: aerobic and alternating anoxic/aerobic		et al.
		E2 and EE2 used from methanolic stock	removal were evaluated	(2008)
		solutions	- EE2 was persistent under anoxic conditions;	
			under aerobic conditions, a removal of 22%	
			was achieved, E2 was readily converted to E1	
			 faster under aerobic (nitrifying) than 	
			anoxic (denitrifying) conditions - Higher removal rates of estrogens were	
			associated with higher nitrification rates	
EE2	Nitrosomas europaea and Nitosospira	Batch tests with the addition of	- EE2 removal was accomplished via nitration	Gaulke
	multiformis from nitrifying AS		- At high NH4-N concentration, degradation	
			occurred by AOB, and at low concentration	(2008)
			degradation is due to heterotrophic bacteria	
E1, E2, E3, EE2	STP	Nitrifying activated sludge plant from	- The EE2 removal represented only 3%, for	
		England	24 h, and 5.6% in the end of 7 d of treatment. However, was observed an excellent removal	
			for the other estrogens (97–99%)	(2000)
E1, E2, EE2	AS	Under strictly anaerobic conditions	 Under anaerobic conditions, E1 was reduced 	Mes et al.
		· · · · · · · · · · · · · · · · · · ·		(2008)
			depends on the type of inoculum	
			- No significant loss of the sum of E1, E2 and	
			EE2 was observed Adversion accounted for a 22, 25% loss of E1	
			 Adsorption accounted for a 32–35% loss of E1 and E2 from the liquid phase 	
E2, E2	AS	AS reactors operated in a semi continuous	and E2 from the liquid phase Under aerobic conditions, E2 and E1 dropped	Li Fetal
Le, L2	n9	flow mode	rapidly due firstly to sorption onto AS and then	
			through biodegradation	
E1, E2, EE2	Nitrite-accumulating sequencing batch		- EE2 removal was observed to be adversely	
E1, E2, EE2				
E1, E2, EE2	reactors		affected by SRT shorter than 5.7 d, and	

Estrogens	Agent and/or Matrix	Experimental Conditions	Conclusions	Reference
		Two reactors operated with different sludge ages, under aerobic conditions and anoxic/ anaerobic/aerobic conditions	significantly lower when SRT was longer than 7.5 d	Pholchan et al. (2008)
E2, EE2	Ground water, aquifer material and effluent	Both aerobic and anoxic conditions performed in aquifer material and groundwater or effluent mixture, in presence of glucose	 Under anoxic conditions, only the E2 biodegradation occurs, in either type of water Under aerobic conditions rapid degradation 	Ying et al. (2008a)
E1, E2, E3, EE2	STPs	Were considered four Australian STPs with different technologies	of E2 occurred, but not of EE2; its half-life was 26 d in ground water and 15 d in effluent - E1 and EE2 were the ones more persistent during the treatment	Ying et al. (2008b)
			 EE2 degradation was faster under aerobic conditions; biodegradation was not signifi- cant under anoxic conditions 	
E2, EE2	Aerated nitrifying submerged fixed bed bioreactors	Lab scale bioreactors with volume 1.4 L and flow velocity 1 m h ⁻¹	 In the batch test, was no or little removal of EE2; however, EE2 removal continued after several months of starvation when by AOB 90% of EE2 removal,in aerated nitrifying batch reactor and a complete biological EE2 removal, from the synthetic effluent in a fixed bed reactor were accomplished 	(2009a)
EE2	AS	Sludge from Shanghai Changqiao Municipal STP; Two SBRs	 No biodegradation of EE2 was observed in the absence of nitrate In the presence of nitrate, the overall removal rate of EE2 was greater than 97% and mostly due to biodegradation (95%) 	(2009)
EE2	AS and membrane bioreactor	SRT: 50 d; aerobic cycle: 2 h; anoxic cycle: 1 h	 AS acclimated in the MBR resulted in the stabilization of EE2 removal (65%) Conventional activated sludge (CAS) resulted in EE2 accumulation in the permeate In batch kinetics, CAS removed EE2 only through sorption and AS acclimated to the MBR showed biodegradation abilities 	et al. (2010)
E1, <mark>E2, E3, EE</mark> 2	Anaerobic sludge	Sludge from three different STPs in France	 Plant-scale anaerobic digestion showed low efficiency (<40%) for removing estrogens 	Muller et al. (2010)
EE2	Laccase from Trametes sp. and Pycnoporus coccineus	Degradation performed in a test tube and a rotating reactor EE2 was adsorbed on sea sand	 Laccase activity of 0.8 U mL⁻¹ Within 48 h, EE2 was removed in the test tube, to the extent of 90% 	Tanaka et al, (2001)
E1, E2, E3, EE2	C. vulgaris	Batch experiments with incubation for 48 h (light and dark)	 E1 and E2 were interconvertible in both light and dark conditions In the light, 50% E2 was further metabolized to an unknown product All the tested estrogens exhibited a degree of partitioning to C. <i>vulgaris</i> 	(2002)
EE2	Pathogenic ascomycete Rusarium proliferatum	$C_{est.} = 25 \text{ mg } L^{-1}$ Batch experiment	 After 15 d, EE2 was removed from the culture in 97% 	(2002)
E2, EE2	Manganese peroxidase and laccase from <i>P. chrysosporium</i> and from <i>T. versicolor</i> cultures	Mediator system with 1- hydroxybenzotriazole	 MnP activity of 10 nkat mL⁻¹ E2 and EE2 were completely transformed within 1 h. In the same amount of time estrogenic activity disappeared 	Suzuki et al. (2003)
EE2	Cunninghamella elegans	EE2 from the previous microbial transformation of oral contraceptive norethisterone	The microbial transformation of EE2 was achieved Several EE2 metabolites were identified	Choudhary et al. (2004)
E1, E2, E3, EE2	Rhodococcus zopfii and R. equi	Cultivation under aerobic conditions in test tubes at 25 $^\circ\text{C},$ for 24 h	 100 mg L⁻¹ EE2 were completely removed, within 24 h, by R. zopfi 	Yoshimoto et al. (2004)
E1, E2, E3, EE2	HRP	Effect of pH and temperature on enzymatickinetics	 HRP activity of 0.017 U mL⁻¹ At pH = 8.0 the removal efficiency was 96–100%, for E2, E3 and EE2, within 1 h 	Auriol et a (2006)
E1	MnP and laccase	Ligninolytic conditions with low-nitrogen and high-carbon culture medium	 E1 decreased by 98% after 5 d of treatment The activities of ligninolytic enzymes MnP and laccase were detected during treatment, which suggested that the disappearance of E1 is related to their production 	et al. (2006)
E1, E2, E3, EE2	HRP and H ₂ O ₂	Initial HRP activity of 0.02 U mL ⁻¹	 The initial HRP activity was sufficient to completely remove EE2 HRP doses up to 0.06 U mL⁻¹ were required to remove E1, E2 and E3 The optimal molar H₂O₂-to-substrate ratio 	Auriol et a (2007a)
E1, E2, E3, EE2	Laccase	Synthetic water and municipal wastewater	was determined to be ~0.45 - Laccase (20 U mL ⁻¹) was able to produce complete removal; 1-hydroxybenzotriazole mediator improved laccase efficiency	

46


Table 4 (continued)

Estrogens	Agent and/or Matrix	Experimental Conditions	Conclusions	Reference
E1, E2, E3, EE2	Acinetobacter, Agromyces and Sphingomonas	Aerobic and anoxic conditions were performed with sand and ultra filtrated secondary effluent	 Under aerobic conditions, degradation rates of estrogens increased with the initial concentration (range 50–200 mg L⁻¹) EE2 remained stable during cultivation with 	(2007)
E1, E2, E3, EE2	Sphingobacterium sp. JCR5		 the three isolates Within 10 d, the removal efficiency was 87% Was suggested a metabolic pathway for EE2 degradation EE2 was metabolized in 87% within 10 d; the strain can also be cultivated on the other estrogens cited 	et al. (2007)
E1, E2, E3, EE2	Trametes versicolor laccase and HRP	Batch reaction at 25 °C with the buffered (pH = 7.0) reaction mixture or wastewater; $C_{est.} = 100 \text{ ng L}^{-1}$	 Laccase activity of 2 U mL⁻¹; HRP activity of 8–10 U mL⁻¹ Estrogens were completely oxidized with both enzymes in the wastewater reaction mixtures after 1 h of treatment 	Auriol et al. (2008)
E2, EE2	T. versicolor	$C_{est} = 10 \text{ mg L}^{-1}$ Experiments in batch and bioreactor (HRT 120 h, operated during 26 d)	- Batch: removal of E2 and EE2 was of more	and Guieysse (2008)
EF2	Eleven microalgae strains	10 mg of EE2 to 50 mL of axenic algal cultures with an initial concentration of 160 mg L^{-1}		Della Greca et al. (2008)
E1, E2, E3, EE2	Laccase from five white-rot fungi	Each strain was cultured at 28 °C for 7–10 d	 The removal characteristics among tested strains were almost the same Complex mixtures of EDCs had an enhanced removal ratio compared to that of single application 	Sei et al. (2008)
EE2	Irpex lacteus, Bjerkandera adusta, Phanerochaete chrysosporium, P. magnoliae, Pleurotus ostreatus, T. versicolor, Pycnoporus cinnabarinus, Dichomitus squalens	$C_{est.} = 10 \text{ mg L}^{-1}$ Static cultures were incubated with EE2	 I. lacteus and P. ostreatus totally degraded EE2, within 3 d The estrogenic activity determination was assessed by a recombinant yeast assay 	et al.
E1, E2, EE2		Synthetic wastewater was used and the estrogens' concentrations were measured by enzyme-linked immunosorbent assays	 Removal of estrogens is accelerated by the presence of algae, in the 6 d batch tests Processes like sorption, biodegradation and photolytic degradation were given impor- tance in the removal of estrogens 	(2010)

SUMMARY OF TABLE

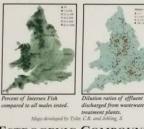
- Estrogen removal was not always complete due to variations mentioned
- Microorganisms present in treatment plants can convert the excreted conjugates
 - Active conjugates
 - Inactive conjugates

ACTIVE VS. INACTIVE

Inactive= conjugates of suphuric and glucuronic acids

- Estrone-3-sulfate
- Beta-Estradiol-3-sulfate
- Estriol-3-sulfate
- Dehydroepiandrosteron e-3-sulfate
- Estrone-3-glucuronide
- Beta-Estradiol-17glucuronide
- Beta-Estradiol-3glucuronide
- Estriol-3-glucuronide
- Estriol-16-glucuronide
- Dehydroepiandrosteron e-3-glucoronide
- 11. Androsterone-3glucuronide

NEGSWS


Calculating Our Estrogen Footprint

Improving a Yeast Bioassay to Quantify the Estrogenic Compounds Released by Wastewater Treatment Plants Emily Crossette, Arthur D. Kney, P.E., PhD, Joseph Colosi, PhD

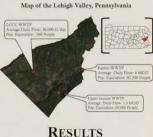
PROBLEM

Developing a Practical Test for Quantifying Conjugated and Deconjugated Estrogenic Compounds in Wastewater Samples Currently, there are no tests practical for a wastewater treatment plant laboratory setting that measure both free and conjugated (inactive) estrogenic compounds. Being able to quantify both forms of estrogen can allow wastewater treatment plants to measure the removal of estrogenic compounds and track the concentrations released into the environment This is of growing importance as data regarding intersex fish findings continue to suggest that wastewater may contribute to these incidences

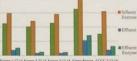
Intersex Fish Incidences and Wastewater Discharge After a 10-year study, the USGS found a widespread occurrence of intersex fish in rivers across the United States. Similar findings recently published from around the world demonstrate the global concern in EDCs. Results from a study in the UK are shown below.

ESTROGENIC COMPOUNDS Source and Types of Estrogenic Compounds

Estrogenic Compounds are the most common form of Endocrine Disrupting Compound (EDC) activity. Estrogenic compounds include natural or synthetic chemicals that mimic estrogen and can bind to human or animal estrogen receptors and disrupt the hormone balance. Exposure to estrogenic compounds can cause these human health effects:


- · Early puberty in females
- · Low sperm count
- · Decreased anogenital distance
- · Cryptorchidism
- · Hypospadias
- · Increased rates of breast, ovarian, testicular, and prostate cancers
- · Altered functions of reproductive organs · Obcaity
- · Altered sexual specific behaviors
- Infertility

CONJUGATED ESTROGEN The body processes estrogenic compounds like natural estrogen. When estrogen has run its course in our bodies, the iver processes the estrogen and binds it with conjugates including glucuronides that are water soluble and can be excreted in urine. These estrogen conjugates are then inactive and will not bind to an estrogen receptor. However, in the presence of E. coli, a bacteria commonly found in wastewater, the estrogenic compounds can deconjugate, or reactivate. Understanding the fate of estrogen and estrogen conjugates can help us understand the hormonal burden we are putting on our ecosystem. Currently, there are few procedures that can test the concentrations of both conjugated and deconjugated


estrogens. This project experimented with a procedure that could be implemented in wastewater treatment plants to determine the fate of conjugated estrogenic compounds in municipal sewage reaching wastewater treatment facilities and whether or not deconjugation is a necessary step in order to accurately quantify levels of estrogenic activity in wastewater influent or effluent

#Influent

Sameline Date and Location

PERCENT INCREASE WITH ENZYME

	Easton			Upper Saucon	I.CCC	
Date	1/17/14	3/27/14	2/12/14	2/12/14	2/12/14	
Influent	45%	20%	37%	42%	107%	
Effluent.	44%	50%	38%	35%	68%	
	Average			Standard Deviation	1	
Influent	đđ	5%	Inflaced	39%		
Effluent	475		Elfluerst 1.3%			

CONCLUSIONS

The studies indicate that measuring only active estrogenic compounds may underestimate the amount of total potential estrogenic activity, especially in smaller plants serving fewer users in a smaller radius. Low spike recovery may further underestimate estrogen

activity and will be addressed in Future Work

		S	PIKE RE	COVER	Y	
			Easton		Upper Saucon	LCCC
		1/17/14	3/27/14	2/12/14	2/12/14	2/12/14
iontrol.	Influent	59%	\$2%	4876	28%	2016
	Sittioner	93%	5.7%	19%	68%	12%
Loca-	Influent	465%	29%	37%	- 43%	17%
based-	Efflores	9356	-62%	49%	18%	13%
Digest.	Influent	10%	33%	27%	24%	13%
azyme	Elflocat	9.75	50%	6.5%	1314	14%
			AVEN	AGE		
6	Soninid		4	0%		58%

pH Mapping

separate from the glucuronides, producing the active estrogen and a carboxylic acid. Although unlikely due to the buffering of the sample, the acid produced could effect the pH and change the reaction rate.

s lost. This will require adding a known spike of conjugated estradiol or 17β-Estradiol to the samples before different parts in the procedure. This will help determine which part of the test is causing problem

Delaware River Analysis

Map estrogenic activity in the Delaware River while studying intersex fish incidences to better understand causes of intersex

ACKNOWLEDGEMENTS

I would like to thank all the supportive individuals at Lafayette College including Dr. John Meier, Tom DeFazio, Harry Folk, Lisa Pezzino, Lisa Karam, Dr. Steve Mylon, Keitha Alexander, Jennifer Magluilo, Rachel Elsas. I would also like to thank Easton Wastewater Treatment Plant staff and administrators including Bill Ronyack and Chuck Wilson

- K.M. Lis F. Sewar, S.J. Kines W.L. Cablic & M. Mos C.S.

Variages 3.1. Andrew, V.C., Klesse, T.J., Wenner, G. O. alli's Street, "Scheme

gene for the human estrogen receptor and the lac-Z operon from E coli, which together galactosidase in the

Incubated Infinest 34% nervise Digest 23% Effluent Enzyme Digest

FUTURE WORK

When the enzyme deconjugates, the estrogenic compounds

Spike Loss Analysis

The next test will likely involve an analysis on where the spike

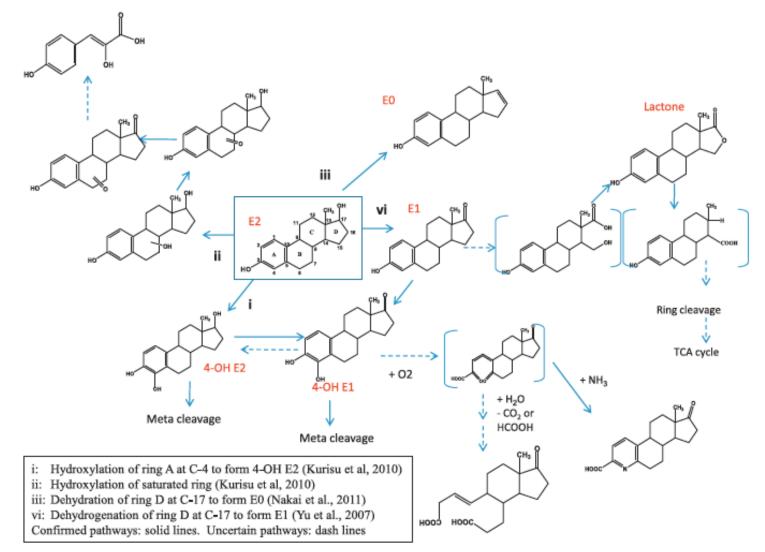
RESOURCES

CONCLUSIONS FROM NEGSWS STUDY

- Increased percent of estrogen with enzyme addition to samples to measure inactive estrogens
- Measuring only active estrogenic compounds may underestimate the amount of total potential estrogenic activity, especially in smaller plants serving fewer users in a smaller radius
- Low spike of recovery may further underestimate estrogenic activity

BACTERIA IN AS

- Variable and mixed community of microorganisms (aerobic, anaerobic, and/or facultative)
- Higher or lower number of bacteria that obtain energy from the conversion of ammonia nitrogen to nitrate nitrogen (nitrification) are also present in AS

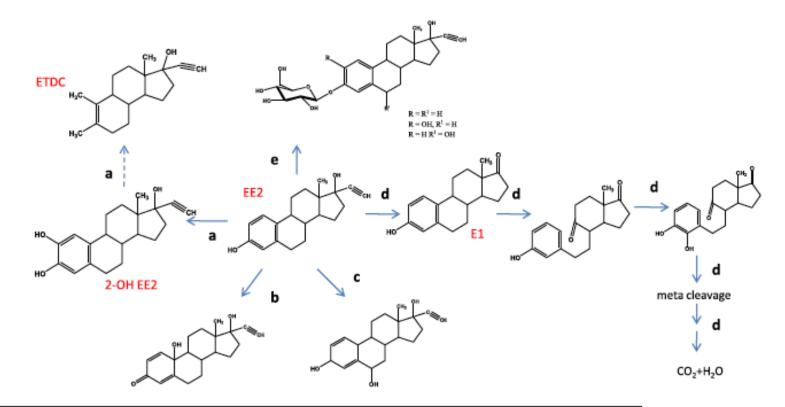

TWO WAYS MICROORGANISMS CAN TRANSFORM (DEGRADE) STEROIDAL HORMONES

- 1. Metabolic (growth-linked)- utilization of steroidal hormones as energy and/or carbon source
- 2. Co-metabolic (non-growth linked)- utilization of bacterial **enzymes** to "degrade" hormones; primary growth substrate is required for sustainable bacterial growth
 - Hydrolase- EC 3: formation of two products from a substrate by hydrolysis
 - Oxidase- EC 1: Catalyzes oxidation reactions; transfer of electrons from on substance to another

PROPOSED E2 DEGRADATION

- i. Hydroxylation of ring A at C-4
- ii. Hydroxylation of saturated ring (B, C, or D ring)
- iii. Dehydration of ring D at C-17
- iv. Dehydrogenation of ring D at C-17

E2 DEGRADATION PATHWAYS (AEROBIC)



Hg. 2. Degradation pathways of E2 by aerobic bacteria.

PROPOSED EE2 DEGRADATION

- a) A-ring C-2 hydroxylation and ring A cleavage by nitrifying activated sludge
- b) Conversion of 3-OH into 3-keto in A ring of EE2 by algal culture
- c) B-ring C-6 hydroxylation by an algal culture
- d) D-ring C-17 conversion to keto
- e) Formation of EE2 conjugation by algal cultures

EE2 DEGRADATION PATHWAYS

- (a) A ring C-2 hydroxylation and ring A cleavage by nitrifying activated sludge (Yi and Harper, 2007)
- (b) Conversion of 3-OH into 3-keto in A ring of EE2 by an algal culture, Scenedesmus quadricauda (Della Greca et al., 2008).
- (c) B-ring C-6 hydroxylation by an algal culture Ankistrodesmus braunii (Della Greca et al., 2008).
- (d) D-ring C-17 conversion to keto by Sphingobacterium sp. JCR5 (Ren et al., 2007)
- (e) Formation of EE2 conjugation by an algal cultures, Scenedesmus capricornutum (Della Greca et al., 2008).
- ETDC = (3-ethynyl-3a, 6, 7-trimethyl -2,3,3a,4,5,5a,8,9,9a,9b-decahydro-1H-cyclopenta[a]naphthalen-3-ol)
- Confirmed pathways: solid lines. Uncertain pathways: dash lines

Fig. 3. Degradation pathways of EE2 by bacteria and algae.

DEGRADATION PATHWAYS

- Similar to cholesterol degradation- oxidation of A-ring is thought to initiate- catabolic pathway with elimination of alkyl side chain (Wael et al., 2011)
- Under aerobic conditions, the first step of E2 degradation is the oxidation of the C-17 alkyl ketone group to E1. Numerous enzymes can perform this step. The steps following are still controversial and there are two mechanisms currently in suspected (Wael et al., 2011).
- Under anaerobic conditions steps still unclear.
- It is not yet clear what pathways are responsible for the degradation of EE2. Although it is known that E2 is degrading to E1, this may not be the case for EE2 (Yu et al., 2007; Ribeiro et al., 2009)

HALF-LIVES OF ESTROGENS IN WWTPS

Table 3: Half-lives of E2, E1 and EE2 degradation in aerobic and denitrifying tanks of WWTP.

Conditions:	Treatment:	Half-life E2/min	Half-life E1/min	Half-life EE2/mi n	Initial conc./ ng/L ^c	Reference:
aerobic:	Activated sludge	1.3	2.5	336	500	Kjølholt J (2004) in De Mes et al. (2005)
aerobic:	Activated sludge	2.9	6.2	126	500 ^ª	Joss et al. (2004)
	MBR ^a	1.1	2.3	168	500 ^ª	Joss et al. (2004)
aerobic:	Activated sludge	2.1	45	n.d ^b	1000	Ternes et al. (1999a)
denitrifying:	Activated sludge	2	72	5940	500	Kjølholt J (2004) in De Mes et al. (2005)
denitrifying:	Activated sludge	2.2	33.3	834	500 ^d	Joss et al. (2004)
denitrifying:	MBŘ ^a	3.6	8.7	336	500 ^d	Joss et al. (2004)

a: membrane bio reactor

b: not degraded

c: if initial concentrations were higher, much higher half-lives were found (De Mes et al. 2005)

d: initial concentration of EE2 was 100 ng/L

AEROBIC MICROORGANISMS

1228

C.-P. Yu et al. / Chemosphere 91 (2013) 1225-1235

Table 1

List of aerobic microorganisms capable of degrading or utilizing steroidal hormones.

Phylogenetic affiliation	l	Degradation ability and mechanism	Source of isolates	References
Alpha-proteobacteria	Aminobacter aminovorans KC7	Degradation of E1, E2	Activated sludge	Yu et al. (2007)
	Aminobacter sp. KC6	Degradation of E1, E2	Activated sludge	Yu et al. (2007)
	Brevundimonas diminuta 1	Conversion of E2 to E1	Activated sludge	Muller et al. (2010)
	Brevundimmonas vesicularies KC12	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Novosphingobium sp. strain JEM-1	Degradation of E1, E2, EE2	Activated sludge	Hashimoto et al. (2010)
	Novosphingobium tardaugens ARI-1	Metabolism of E1, E2, E3	Activated sludge	Fujii et al. (2002)
	Phyllobacterium myrsinacearum BP1	Degradation of E1, E2, E3; cometabolism of EE2 in the presence of E1, E2, E3	Compost	Pauwels et al. (2008)
	Sphingomonas sp. CYH	Degradation of E1, E2 under both aerobic and anoxic conditions	Artificial sandy aquifer	Ke et al. (2007)
	Sphingomonas sp. KC8	Metabolism of E2, E1, testosterone	Activated sludge	Yu et al. (2007) and Roh and Chu (2010)
	Sphingomonas sp. KC9	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Sphingomonas sp. KC10	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Sphingomonas sp. KC11	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Sphingomonas sp. KC14	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Sphingomonas sp. ED8	Metabolism of E2, E1	Soil samples from agricultural fields	Kurisu et al. (2010)
	Sphingomonas sp. ED9	Metabolism of E2, E1	Soil samples from agricultural fields	Kurisu et al. (2010)
Beta-proteobacteria	Achromobacter xylosoxidans	Metabolism of E1, E2	Activated sludge	Weber et al. (2005)
	Alcaligenes sp.	Metabolism of E2, testosterone	Soil	Payne and Talalay (198
	Alcaligenes faecalis	Conversion of E2 to E1 and vice versa	Intestinal microorganisms	Jarvenpaa et al. (1980)
	Leptothrix discophora (LMG 8142)	Production of biogenic Mn oxides to oxidize EE2	Belgian coordinated collections of microorganisms	Sabirova et al. (2008)
	Nitrosomonas europaea ATCC 19718	Cometabolism and Nitration of EE2	ATCC	Gaulke et al. (2008) and Skotnicka-Pitak et al. (2009)
	Ralstonia pickettii BP2	Degradation of E1, E2, E3; cometabolism of EE2 in the presence of E1, E2, E3	Compost	Pauwels et al. (2008)
	Ralstonia sp.	Metabolism of E1, E2	Activated sludge	Weber et al. (2005)

AEROBIC CONT.

Gamma- proteobacteria	Acinetobacter sp. LHJ1 Acinetobacter sp. BP8	Conversion of E2 to E1 Degradation of E1, E2, E3; cometabolism of EE2 in the presence of E1, E2, E3	Artificial sandy aquifer Compost	Ke et al. (2007) Pauwels et al. (2008)
	Acinetobacter sp. BP10	Degradation of E1, E2, E3; cometabolism of EE2 in the presence of E1, E2, E3	Compost	Pauwels et al. (2008)
	Buttiauxella Escherichia coli KC13 Pseudomonas aeruginosa Pseudomonas aeruginosa BP3	Metabolism of E2 and Testosterone Conversion of E2 to E1 Conversion of E2 to E1 and vice versa Degradation of E1, E2, E3; cometabolism of EE2 in the presence of E1, E2, E3	Baltic Sea Activated sludge Intestinal microorganisms Compost	Zhang et al. (2011) Yu et al. (2007) Jarvenpaa et al. (1980) Pauwels et al. (2008)
	Pseudomonas aeruginosa TJ1 Pseudomonas putida MnB1 (LMG 2321)	Metabolism of E2 Production of biogenic Mn oxides to oxidize EE2	Activated sludge Belgian coordinated collections of microorganisms	Zeng et al. (2009b) Sabirova et al. (2008)
	Pseudomonas putida MnB6 (LMG 2322)	Production of biogenic Mn oxides to oxidize EE2	Belgian coordinated collections of microorganisms	Sabirova et al. (2008)
	Pseudomonas putida MnB29 (LMG 2323)	Production of biogenic Mn oxides to oxidize EE2	Belgian coordinated collections of microorganisms	Sabirova et al. (2008)
	Pseudomonas sp. BP7	Degradation of E1, E2, E3; cometabolism of EE2 in the presence of E1, E2, E3	Compost	Pauwels et al. (2008)
	Vibrio sp. H5	Metbolism of E2 and Testosterone	Baltic Sea	Sang et al. (2012)
Actinobacteria	Agromyces sp. LHJ3	Degradation of E2 and E3 with formation of E1 under aerobic condition; degradation of E2 with formation of E1 under anoxic condition	Artificial sandy aquifer	Ke et al. (2007)
	Mycobacterium smegmatis	Conversion of E2 to E1 and vice versa; conversion of 16α-hydroxyestrone to E3	Intestinal microorganisms	Jarvenpaa et al. (1980)
	Microbacteria testaceum KC5	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Nocardioides simplex KC3	Conversion of E2 to E1	Activated sludge	Yu et al. (2007)
	Rhodococcus equi Y50155	Metabolism of E1, E2, E3, EE2	Activated sludge	Yoshimoto et al. (2004)
	Rhodococcus equi Y50156	Metabolism of E1, E2, E3, EE2	Activated sludge	Yoshimoto et al. (2004)
	Rhodococcus equi Y50157	Metabolism of E1, E2, E3, EE2	Activated sludge	Yoshimoto et al. (2004)
	Rhodococcus equi ATCC 13557	Partial degradation of	ATCC	O'Grady et al. (2009)
	Rhodococcus erythropolis ATCC 4277	EE2 in the presence of a cosubstrate Partial degradation of EE2 in the presence of a cosubstrate	ATCC	O'Grady et al. (2009)
	Rhodococcus rubber KC4 Rhodococcus sp. ED6	Conversion of E2 to E1 Metabolism of E2, E1	Activated sludge Soil samples from agricultural fields	Yu et al. (2007) Kurisu et al. (2010)

AEROBIC CONT.

C.-P. Yu et al./ Chemosphere 91 (2013) 1225-1235

Table 1 (continued)

Phylogenetic affiliatio	n	Degradation ability and mechanism	Source of isolates	References
	Rhodococcus sp. ED7	Metabolism of E2, E1	Soil samples from agricultural fields	Kurisu et al. (2010)
	Rhodococcus sp. ED10	Metabolism of E2, E1	Soil samples from agricultural fields	Kurisu et al. (2010)
	Rhodococcus zopfii Y50158 Rhodococcus zopfii ATCC 51349	Metabolism of E1, E2, E3, EE2 Partial degradation of EE2 in the presence of a cosubstrate	Activated sludge ATCC	Yoshimoto et al. (2004 O'Grady et al. (2009)
Bacteroidetes	Flavobacterium sp. KC1 Flavobacterium sp. KC2 Sphingobacterium sp. JCR5	Conversion of E2 to E1 Conversion of E2 to E1 Metabolism of E1, E2, E3, EE2.	Activated sludge Activated sludge Oral contraceptives producing factory activated sludge	Yu et al. (2007) Yu et al. (2007) Ren et al. (2007)
Firmicutes	Bacillus cereus Socransky 67	Conversion of E2 to unknown metabolites	Dental plaque	Ojanotkoharri et al. (1991)
	Bacillus sp. E2Y1	Degradation of E1, E2	Activated sludge	Jiang et al. (2010)
	Bacillus sp. E2Y2	Conversion of E2 to E1	Activated sludge	Jiang et al. (2010)
	Bacillus sp. E2Y3	Conversion of E2 to E1	Activated sludge	Jiang et al. (2010)
	Bacillus sp. E2Y4	Degradation of E1, E2	Activated sludge	Jiang et al. (2010)
	Bacillus sp. E2Y5	Conversion of E2 to E1	Activated sludge	Jiang et al. (2010)
	Staphylococcus aureus	Conversion of E2 to E1 and vice versa; conversion of 16α-hydroxyestrone to E3	Intestinal microorganisms	Jarvenpaa et al. (1980)
	Streptococcus faecalis	Conversion of E2 to E1; conversion of E1 to 16\alpha-hydroxyestrone	Intestinal microorganisms	Jarvenpaa et al. (1980)
	Streptococcus mutans Ingbritt	Conversion of E2 to E1	Dental plaque	Ojanotkoharri et al. (1991)
	Streptococcus mutans NCTC 10449	Conversion of E2 to E1	Dental plaque	Ojanotkoharri et al. (1991)
	Streptococcus sanguis NCTC 10904	Conversion of E2 to E1	Dental plaque	Ojanotkoharri et al. (1991)

1229

ANAEROBIC MICROORGANISMS

1230

C.-P. Yu et al. / Chemosphere 91 (2013) 1225-1235

Table 2

List of anaerobic and anoxic steroid hormone-degrading and -transforming bacteria.

Phylogenetic affiliation		Degradation ability and mechanism	Source of isolates	References
Alpha-proteobacteria	Sphingomonas sp. CYH	Degradation of E1, E2 under both aerobic and anoxic conditions	Artificial sandy aquifer	Ke et al. (2007)
Beta-proteobacteria	Denitratisoma oestradiolicum AcBE2-1 ^T	Metabolism of E1, E2 under the denitrifying condition	Activated sludge	Fahrbach et al. (2006)
Gamma-proteobacteria	Steroidobacter denitrificans FS ^T	Metabolism of E1, E2 testosterone, 4- androstene-3,17-dione under the denitrifying condition	Anoxic digested sludge	Fahrbach et al. (2008)
Actinobacteria	Actinomyces viscosus 378,5 Agromyces sp. LHJ3	Degradation of E2 and progesterone anaerobically Degradation of E2 and E3 with formation of E1 under aerobic condition; degradation of E2 with formation of E1 under anoxic condition	Subgingival plaque samples Artificial sandy aquifer	Komman and Loesche (1982) Ke et al. (2007)
Bacteroidetes	Bacteroides fragilis Bacteroides gingivalis w	Conversion of E1 to E2 and E1 to 16α- hydroxyestrone anaerobically Degradation of progesterone anaerobically	Intestinal microorganisms Subgingival plaque samples	Jarvenpaa et al. (1980) Komman and Loesche (1982)
	Bacteroides gingivalis 167.5	Degradation of E2 and progesterone anaerobically	Subgingival plaque samples	Komman and Loesche (1982)
	Bacteroides gingivalis 208,1	Degradation of E2 and progesterone anaerobically	Subgingival plaque samples	Komman and Loesche (1982)
	Bacteroides melaninogenicus subsp. Intermedius 155,6	Degradation of E2 and progesterone anaerobically	Subgingival plaque samples	Komman and Loesche (1982)
	Bacteroides melaninogenicus subsp. Intermedius 166.5	Degradation of E2 and progesterone anaerobically	Subgingival plaque samples	Komman and Loesche (1982)
	Bacteroides melaninogenicus subsp. Intermedius 167,4	Degradation of E2 and progesterone anaerobically	Subgingival plaque samples	Komman and Loesche (1982)
	Bacteroides melaninogenicus subsp. Melaninogenicus ATCC 25845	Degradation of E2 and progesterone anaerobically	ATCC	Komman and Loesche (1982)
Unclassified	Iron-reducing bacteria with 16S rRNA gene 84% similar to <i>Shewanella baltica</i>	Degradation of E1, E2, E3 under iron- reducing condition	Anaerobic digester	Ivanov et al. (2010)

BACTERIA FOUND THAT DEGRADE ESTROGENS

- 2002- Novosphingobium tardaugens sp. nov., strain ARI-1^T (Fujii et al., 2002; 2003)
 - E2 degrading activity- utilizes E2 as carbon source
 - E1 and E3
- 2004- *Rhodococcus equi, strains* Y50155, Y50156, and Y50157 (Yoshimoto et al., 2004)
 - Thought E2 did not degrade to E1
 - E2 and E1 degraded completely
 - E3 thought to degrade
- 2004- *Rhodococcus zopfii*, strain Y50158 (Yoshimoto et al., 2004)
 - Hypothesized to degrade EE2 but was not sole carbon source
 - Degrades E2 completely

BACTERIA CONT.

- 2006- *Denitratisoma oestradiolicum*, strain AcBE2-1 (Fahrbach et al., 2006)
 - Degrades E2 with nitrate as the electron acceptor
- 2007- Aminobacter (strains KC6 and KC7), Brevundimonas (strain KC12), Escherichia (strain KC13), Flavobacterium (strain KC1), Microbacterium (strain KC5), Nocardioides (strain KC3), Rhodococcus (strain KC4), and Sphingomonas (strains KC8-KC11 and KC14) (Yu et al., 2007).
 - Strains KC6-8 were only three capable of degrading E1
 - All 14 isolates converted E2 to E1, hypothesis of E1 as metabolite of E2 degradation
 - E2 oxidized to E1 under aerobic conditions and slower degradation under anaerobic conditions
 - These isolates were of three Phyla: *Proteobacteria*, *Actinobacteria*, and *Bacteroidetes*
 - Degradation pathways begin to be explained

BACTERIA CONT.

• 2007- Bacteria found in sediment, (Ke et al., 2007)

• Under Aerobic Conditions

- All isolates, *Acinetobacter* (LHJ1), Agromyces (LHJ3), and CYH, oxidize E2 to E1
- Agromyces (strain LHJ3)- degrades E3
- Strain CYH had a 95% similarity with *Sphingomonas* degrades E1
- Under Anaerobic Conditions
 - Strain CYH degrades E1
 - Agromyces (strain LHJ3)- degrades E2
 - E3 and EE2 were not degraded by isolates

BACTERIA CONT.

- EE2 was found to be metabolized by ammonium-oxidizing bacteria with suspected ammonium monoxygenase involvement (Muller et al., 2009; Vader et al., 2000)
 - In an enriched culture where EE2 was the sole carbon source
 - more evidence of E2 degradation to E1
 - Consortium of Novosphingobium tardaugens, Denitratisoma oestradiolicum, Rhodococcus zopfii, Rhodococcus equi, Achromobacter xyloxidans, Ralstonia and Brevundimonas
- Novospingobium sp. (strain (JEM-1) was isolated (Hashimoto et al., 2011) is closely related to the strain ARI-1^T, first isolated by Fujii et al., 2002, with 96.6% similarity
 - No additional information was provided on the abilities of JEM-1 to degrade EE2 so study seems unjustified

So...

- Complete degradation of EE2 by nitrifying AS(NAS) resulting in formation of hydrophilic compounds
- E1, E2, EE2 all degraded by NAS
- Involvement of ammonia monoxygenase (AMO) in biotransformation of EE2 supporting cometabolic degradation
- Most likely due to heterotrophic bacteria

CASE STUDY OF *NOVOSPHINGOBIUM* SP. STRAIN JEM-1 (HASHIMOTO ET AL., 2011)

- Previous studies have no information on the abundance of isolates in AS of the contribution of isolates to estrogen removal in WWT processes
- Isolated using an enrichment culture from WWTP
- Able to degrade E2 and E1 from initial conc. of 10µg/L to below detection limit (0.5 ng/L) in less than 1 hr.
- Strain JEM-1 is able to degrade EE2
- JEM-1 investigated using rt-PCR and estrogen conc. using LC/MS/MS in two full-scale WWTP and a bench-scale bio-augmentation experiment

CASE STUDY OF ACTINOBACTERIA-*RHODOCOCCUS EQUI* (YOSHIMOTO ET AL., 2004)

- *R. equi* is a facultative, opportunistic pathogen that causes fatal pyogranulomatous bronchopneumonia in foals (as well as HIV patients)
- Essential steps in catabolic pathway (encoded by following genes) are involved in the pathogenicity of R.equi
- Genes important for methylhexahydroindanone propionate (HIP, 5OH-HIP) degradation, as part of steroid catabolic pathway, are targets for development of live-attenuated vaccine against *R.equ*i infections
- Two genes within cholesterol catabolic gene cluster: *ipdA* and *ipdB* and mutant *ipdAB* encode heterodimeric CoA transferase important for growth on steroids and help with steroid catabolic pathway in degradation
- *ipdAB* thought to remove intermediates by beta-oxidation during steroid degradation
- Inactivation of *ipdAB* induced a substantial protective immunity
- Study also found other gene involved in steroid ring degradation and may help to disrupt the immune homeostasis (fadE30)

WHAT'S NEXT? Future Directions...

- Degradation pathways need to be investigated further
- EE2 degradation needs to be researched and more isolates need to be provided
- Better understand metabolites involved in EE2, E2, and E1 degradation
- Degradation under anaerobic and anoxic conditions
- Studies with real world parameters...estrogen concentrations, longer SRTs, longer HRTs

End

• <u>To next lecture</u>