Mercury Compounds in Aquatic Systems and Their Relevance to Coal Production

Ryan Wicks 14 October 2014

Presentation Overview

Background

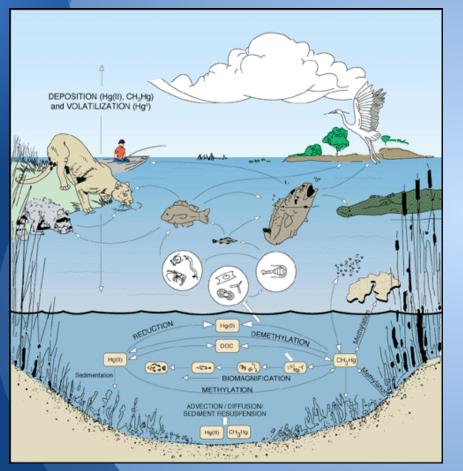
- Types and toxicity
- Why Hg compounds are an emerging concern: bioaccumulation in seafood and rising ocean levels*
- My specific interest: leachate containing Hg compounds
- Transformation by organisms: formation potential of organic and inorganic forms
 Solubility and Transport
 - Applications to forming models and solutions

Organic and Inorganic Forms Types and Toxicity

Hg⁰, Hg²⁺: 0.002 µg/L ~ 2 ppb (water); kidney, renal, ocular damage, developmental damage

(CH₃-Hg)⁺: ~1 ppm (food); severe neurological damage, developmental damage **acutely toxic**

Organic Mercury in Ocean Ecosystems


Relatively high concentration in fish via "biomagnification"**
Rising levels of mercury in ocean systems - anthropogenic origins, coal burning is a major source**
2004: U.S. FDA issue warning that pregnant women and children should restrict their consumption of certain kinds of fish: Shark, Swordfish, King Mackerel, Tilefish*

Total Mercury Content from FDA Sampling

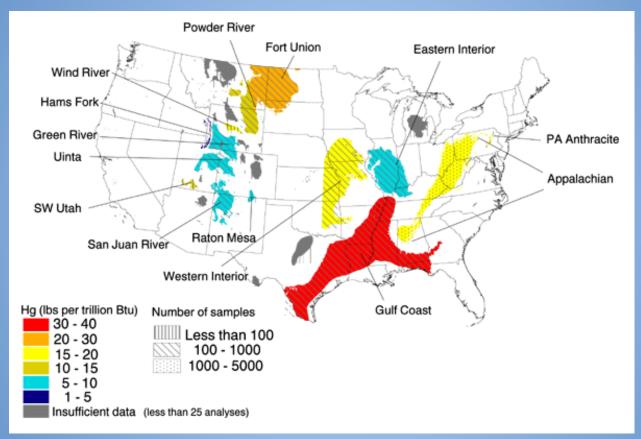
SPECIES ≑	MERCURY CONCENTRATION MEAN (PPM) ^	MERCURY CONCENTRATION MEDIAN (PPM)	MERCURY CONCENTRATION STDEV (PPM)	MERCURY CONCENTRATION MIN (PPM)	MERCURY CONCENTRATION MAX (PPM)	NO. OF SAMPLES	SOURCE OF DATA
TILEFISH (Gulf of Mexico)	1.45	N/A	N/A	0.65	3.73	60	NMFS REPORT 1978
SWORDFISH	0.995	0.87	0.539	ND	3.22	636	FDA 1990- 2010
SHARK	0.979	0.811	0.626	ND	4.54	356	FDA 1990- 2007
MACKEREL KING	0.73	N/A	N/A	0.23	1.67	213	GULF OF MEXICO REPORT 2000
TUNA (FRESH/FROZEN, BIGEYE)	0.689	0.56	0.341	0.128	1.816	21	FDA 1991 - 2005
ORANGE ROUGHY	0.571	0.562	0.183	0.265	1.12	81	FDA 1991- 2009

http://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm191007.htm

Bioconcentration of Organic Mercury in Oceans

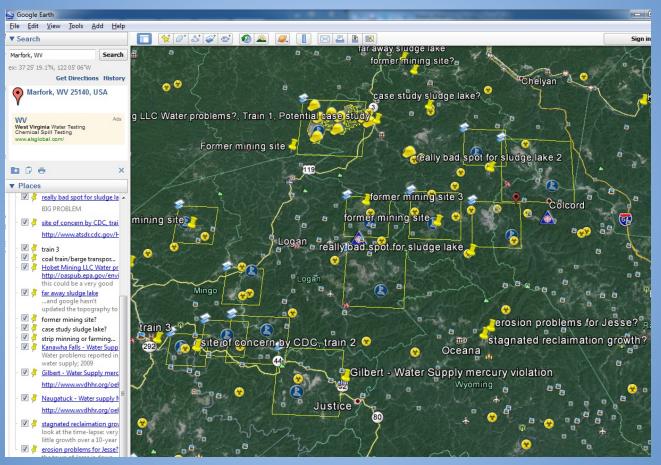
Methylation of Hg by bacteria → consumption by zooplankton → long biological half-life of Me-Hg and high uptake rates by zooplankton* → increased concentrations in tissue at higher levels in food-chain

More on the details later...

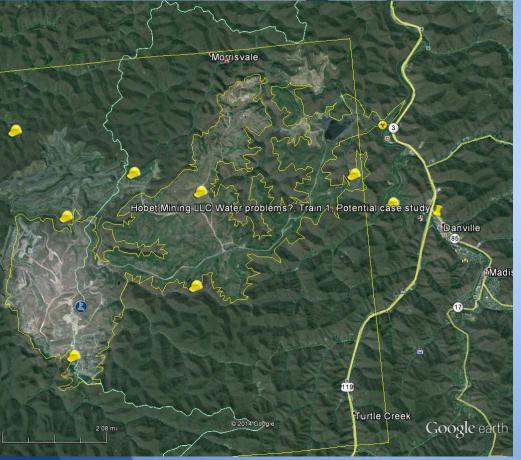

Image Credit: USDA. http://www.usgs.gov/themes/factsheet/146-00/ Mercury in the Environment: Fact Sheet. (October 2000)

Anthropogenic Sources of Hg

- Human activity has greatly contributed to Hg additions to the environment.*
- Coal-fired power plant emissions are a major contributor **
- As Dr. Jared Cohon noted, however, controls for coalfired power plants are getting better (at least in the US) → What about sources of Hg pollution from coal mining sites? - more direct route of pollution of water supply systems


 * United Nateions Environment Programme. <u>Global Mercury Assessment 2013</u>
 ** Northeast Statees for Coordinated Air Use Management. <u>Mercury Emissions From</u> <u>Coal-Fired Power Plants</u>

Hg Concentrations in Coal



USGS, http://pubs.usgs.gov/of/1998/of98-772/map.htm

Google Earth GIS Shameless Plug

Coal Mining Operations in WV

 "Strip mining" or "mountain-top removal" strategy: destroy mountains with nitrogen-based explosive charges → filter and wash debris

see advocacy group: ilovemountains.org

Coal Mining Operations in WV

- Impoundments for coal slurry/sludge - effluent from coal washing process
- Most Impoundments are ponds formed by mountains and artificial dams of refuse material, but there are ground injection sites as well
- Impoundments generally have on the order of 10⁹ gallons maximum capacity
- Treatment and controlle release management

Ohio Valley Environmental Coalition, Sludge Safety Project: http://www.sludgesafety.org/photos?&page=2 "On February 26, 1972, a coal waste impoundment failed at Buffalo Creek, West Virginia resulting in the deaths of 125 people and leaving over 4,000 homeless. The area downstream of the impoundment was affected for a distance of over 15 miles. The failure occurred because of deficiencies in the design, construction, and inspection of the impounding structure."*

"On October 11, 2000, a coal waste impoundment broke into an underground coal mine in Martin County, Kentucky, releasing over 300 million gallons of slurry. Slurry poured into the mine and discharged from two mine portals, contaminating miles of creeks and rivers. Fortunately, no miners were in the mine at the time of the failure, and no one was physically injured downstream. However, aquatic life was killed, environmental damage occurred, and the water supplies for several communities were disrupted. The failure occurred because the barrier between the mine workings and the impoundment was inadequate."*

* Mine Safety and Health Administration. <u>MSHA COAL MINE IMPOUNDMENT INSPECTION AND PLAN</u> <u>REVIEW HANDBOOK</u>. October 2007

Personal Interest

US and global concern over both Hg has prompted a large amount of research regarding its use and physical distribution, thus making it an ideal case study to develop more robust environmental contamination models.

Questions to Answer:

Initial Questions:

- I. What are the permissible (MCL) of Mercury in water supplies? What are the toxicological effects?
- 2. What compounds and minerals are present in coal slurry/sludge and in what concentrations?
- 3. Is there currently any evidence of groundwater infiltration into water supplies?

Quintessential Model-Specific Questions:

- 4. How water soluble is methyl mercury? Hg-II? Hg(0)?
- 5. What bacteria can take Mg 2+ --> methyl mercury in soils? (Methylation? Demethylation?)
- 6. How readily does methylmercury bind to soil minerals? Hg 2+? Hg-0?
- 7. How does pH effect solubility and formation potential of Me-Hg?
- 8. How can we create more accurate flood-routing models?

Remediation Questions:

- 9. What current remediation practices are available?
- 10. What organisms can demthylize Hg?

What are the permissible (MCL) of Mercury in water supplies? What are the toxicological effects?

EPA limits on drinking water supplies (http://water.epa.gov/drink/contaminants/index.cfm#one):

Contaminant	MCLG1(MG/L)2	MCL or TT1(MG/L)2		Potential Health Effects from Long-Term Exposure AboveSothe MCL (unless specified as short-term)Dr	
Mercury (inorganic)	0.002	0.002	Kidney damage	Erosion of natural deposits; discharg runoff from landfills and croplands	e from refineries and factories;

EPA does not track organic mercury compounds like Me-Hg in water supplies**

What compounds and minerals are present in coal slurry/sludge and in what concentrations?

Aken, Benoit. et al. <u>Environmental</u> <u>Contaminants in Coal Slurry Intended for</u> <u>Underground Injection in the State of West</u> <u>Virginia</u>. Journal of Environmental Engineering. August. 2014

Analysis of data from:

An Evaluation of the underground Injection of Coal Slurry in West Virginia. West virginia Department of Environmental Protection. Senate concurrent resolution - 15 Table 1. Analysis of Liquid Phases of Coal and Coal Slurry in Samples from Three Injection and Coal Preparation Sites in West Virginia: Southern Minerals, Loadout, and Panther

	Sou	thern miner	als		Loadout			Panther		
	SM slurry		SM coal	LL slurry		LL coal leachate	PL slurry		PL coal leachate	
Contaminant	Dissolved	Total	leachate	Dissolved	Total	Dissolved	Dissolved	Total	Dissolved	
Metals (mg/L)										
Aluminum ^a	0.1950	0.651	NA	0.1500	2.37	0.0540	0.029	0.0460	0.398	
Antimony ^a	0.0220	0.0215	NA	0.0057	0.0059	0.0019	0.0146	0.016	0.0012	
Arsenica	0.0039	0.0043	NA	0.0042	0.0047	0.0041	0.0104	0.0113	0.012	
Barium	0.0809	0.114	NA	0.0974	0.133	0.0055	0.243	0.269	0.0129	
Beryllium	0.0002	0.0004	NA	ND	ND	ND	ND	ND	ND	
Cadmium	ND	ND	NA	ND	ND	ND	ND	0.0011	ND	
Calcium	51.4	51.7	NA	62.10	63.7	2.42	2.83	3.51	0.464	
Chromium	0.0013	0.0016	NA	ND	ND	0.0013	0.0272	0.0342	ND	
Cobalt	0.0021	0.0024	NA	ND	0.0016	ND	0.0142	0.0161	ND	
Copper	0.0012	0.0018	NA	0.0016	0.0034	ND	0.0248	0.0278	ND	
Iron ^a	ND	0.91	NA	ND	0.828	ND	0.068	0.089	ND	
Lead ^a	ND	0.0008	NA	ND	0.0016	ND	0.0762	0.0775	ND	
Magnesium	20.8	21	NA	19.8	20.6	0.705	0.591	0.771	ND	
Manganese ^a	0.0141	0.0177	NA	0.0860	0.097	ND	0.021	0.028	ND	
Mercury	ND	ND	NA	ND	ND	ND	ND	ND	ND	
Molybdenum	0.0176	0.0178	NA	0.0447	0.0466	0.0090	0.198	0.217	ND	
Nickel	0.0043	0.0052	NA	0.0067	0.0073	ND	0.0386	0.0432	ND	
Potassium	6.90	7.07	NA	13.9	14.3	5.02	5.38	7.05	1.23	
Selenium	0.0082	0.0082	NA	0.0268	0.0278	0.0195	0.0224	0.0255	0.0087	
Silicon	3.3	3.76	NA	2.3	8.54	11.1	0.346	0.358	0.384	
Silver	ND	ND	NA	ND	ND	0.0005	ND	ND	ND	
Sodium	58.8	55.5	NA	265	267	4.88	266	341	10.1	
Strontium	1.16	1.17	NA	1.44	1.47	0.0159	0.571	0.632	0.0222	
Thallium	ND	0.0002	NA	0.0003	0.0004	ND	ND	ND	ND	
Vanadium	0.0018	0.0021	NA	0.0013	0.0025	0.0044	0.0103	0.0131	0.007	
Zinc	0.016	0.027	NA	ND	0.008	0.008	0.019	0.014	ND	
General chemistry (mg/L)										
Nitrogen, nitrate	0.45	_	NA	1.85	_	0.07	0.59	_	0.03	
Nitrogen, nitrite ^a	2.32	_	NA	0.35	_	0.17	ND	_	ND	
Chloride ^a	0.18	_	NA	84.80	_	1.45	423.00	_	7.12	
Fluoride ^a	8.39	_	NA	ND	_	0.55	1.53	_	0.51	
Sulfate ^a	157.00	_	NA	849.00	_	7.40	261.00	_	2.60	
Nitrogen, ammonia	0.18	_	NA	1.27	_	0.34	1.96	_	0.44	
Specific conductance ^b	702.00	_	NA	1,840	_	57.20	5,000.00	_	170.00	
Total dissolved solids ^a	423.00	_	NA	933.00	_	21.00	2,540.00	_	87.00	
Total suspended solids	5,440.00	_	NA	191.00	_	1.00	74.00	_	6.00	
Acidity, total	6.80	_	NA	6.90	_	ND	ND	_	ND	
Alkalinity, bicarbonate	180.00	_	NA	102.00	_	25.50	412.00	_	42.00	
Alkalinity, carbonate	1.40	_	NA	ND	_	6.00	7.10	_	14.30	
Alkalinity, total	181.00	_	NA	103.00	_	32.70	420.00	_	58.20	
pH ^{a, b}	7.93	_	NA	7.88	_	9.40	8.26	_	9.56	

Volatile organic compounds (µg	;/L)								
2-Butanone	ND	_	NA	ND	_	ND	68.4	_	ND
Acetone	ND	_	NA	ND	_	ND	16.7	_	9.9
Acrolein	ND		NA	7	_	14.8	ND	_	ND
Benzene	ND		NA	ND	_	ND	1.8	_	1.6
m.p-Xylene	ND	_	NA	ND	_	ND	0.8	_	0.4
Methylene chloride	ND	_	NA	1.4	_	1.0	ND		ND
o-Xylene	ND	_	NA	ND	_	ND	0.6	_	0.3
Toluene	ND	_	NA	0.6	_	0.7	2.8	_	2.1
Semivolatile organic compounds	s (mg/L)								
Bis(2-ethylhexyl) phthalate	ND	_	NA	ND	_	ND	ND	_	ND
Naphthalene	ND	_	NA	0.0143	_	ND	ND	_	ND
Phenanthrene	ND	_	NA	0.061	_	ND	ND	_	ND
Miscellaneous (mg/L)									
TPH (diesel range)	ND	_	NA	16.60	_	ND	0.51	_	ND
TPH (oil range)	ND	_	NA	19.40	_	ND	ND	_	ND
Sulfate-reducing bacteriab	NA	_	NA	NA	_	ND	ND	_	ND

Note: ND = not detected; NA = not analyzed.

^aAnalytes detected at least once at or above one environmental guideline comparison value are marked in bold.

^bThe specific conductance is given in mS/cm, the pH is given in SU, and the bacterial numbers are given in CFU/mL.

	© ASCE	05014004-5	J. Environ. Eng.
coupled plasm EPA (NERL) M coupled plasm according to U 1994). The me wide variety of waters, drinkin For the analysis slurry and raw	in the samples were determined by induct na-mass spectrometry (ICP-MS) according Method 200.8 (revision 5.4, 1994) and induc na-atomic emission spectrometry (ICP-AES J.S. EPA (NERL) Method 200.7 (revision 4.4 ethods are applicable to the determination of dissolved elements in groundwater, surface ng water, wastewaters, sludges, and soils sa- is of trace metals in the solid fractions of th coal, the samples were subjected to acid of J.S. EPA method 3050 B.	to U.S. ctively 3) 4, of a ce amples. e coal	

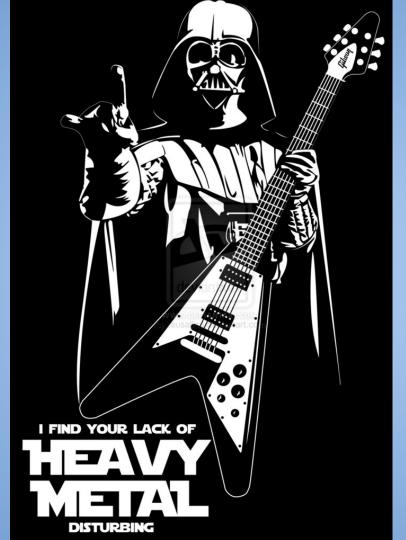
Is there currently any evidence of groundwater infiltration into water supplies?

- Sites chosen because of differences in duration of time ground injection sites had been in use and variation in mining activity so as to provide comparisons
- Data only collected over 1 year period
- lack of MSDS on materials used in coal preparation plants made sampling difficult
- Virtually no Hg detected
- Note the low pH at all sampled sites
- Unable to establish causal effect of ground injection on groundwater supplies

Table 2. Analysis of Liquid Phases of Coal and Coal Shurry in Samples from Three Injection and Coal Preparation Sites in West Virginia: Power Mountain, Coresco, and Marfork

	Power m	ountain		Cores	sco		Marf	ork	
	PM slurry	(liquid)	PM coal leachate	CL Slurry	(liquid)	CL coal leachate	MF slurry	MF coal	leachate
Contaminant	Dissolved	Total	Dissolved	Dissolved	Total	Dissolved	(liquid)	Dissolved	Total
Metals (mg/L)									
Aluminum ^a	0.509	0.564	0.214	0.532	0.644	0.356	NA	0.146	1.190
Antimony ^a	0.0004	0.0005	0.0018	0.0069	0.0071	0.0005	NA	0.0015	0.0011
Arsenica	ND	ND	0.0141	ND	ND	0.0019	NA	0.0198	0.246
Barium	0.0523	0.0634	0.0079	0.0677	0.0713	0.0047	NA	0.0227	0.695
Beryllium	ND	ND	ND	ND	ND	ND	NA	ND	0.002
Cadmium	ND	ND	ND	ND	ND	ND	NA	ND	ND
Calcium	124.00	123.00	0.552	111	115	4.820	NA	0.2840	1.260
Chromium	ND	ND	ND	ND	ND	ND	NA	ND	0.0054
Cobalt	0.0037	0.0039	ND	0.0027	0.0029	ND	NA	ND	0.0067
Copper	0.0015	0.0016	ND	0.0021	0.0021	ND	NA	ND	0.0248
Iron ^a	0.030	0.195	0.038	ND	0.174	0.022	NA	0.050	13.200
Lead ^a	ND	0.0004	0.0004	ND	ND	ND	NA	0.0003	0.2170
Magnesium	81.40	82.20	ND	38.90	40.00	0.29	NA	ND	2.21
Manganese ^a	0.921	0.921	ND	0.133	0.138	ND	NA	0.001	0.142
Mercury	ND	ND	ND	ND	ND	ND	NA	ND	ND
Molybdenum	0.0023	0.0024	0.0035	0.0290	0.0297	0.0020	NA	0.0029	0.0021
Nickel	0.0092	0.0096	ND	0.0073	0.0074	ND	NA	ND	0.011
Potassium	15.50	15.50	0.380	5.01	5.16	1.080	NA	0.321	0.925
Selenium	0.0057	0.0059	0.0082	0.0024	0.0024	0.0019	NA	0.0043	0.0040
Silicon	3.27	5.31	7.59	1.14	3.91	0.43	NA	13.20	71.00
Silver	0.0006	0.0006	ND	ND	ND	ND	NA	ND	ND
Sodium	236.0	237.0	75.5	272.0	279.0	12.6	NA	48.1	6.7
Strontium	1.63	1.74	0.0043	31.9	3.27	0.16	NA	0.115	0.135
Thallium	0.0002	0.0003	ND	ND	0.0002	ND	NA	0.0002	0.0004
Vanadium	ND	ND	0.0052	ND	ND	0.0015	NA	0.0031	ND
Zinc	0.032	0.041	ND	ND	ND	0.003	NA	ND	0.038
General chemistry (mg/L)									
Nitrogen, nitrate	3.45	_	ND	0.83	_	ND	NA	ND	_
Nitrogen, nitrite ^a	ND	_	0.14	0.16		ND	NA	0.10	_
Chloride ^a	77.10	_	1.71	32.80	_	0.60	NA	1.43	_
Fluoride ^a	0.56	_	0.42	ND	_	ND	NA	0.31	_
Sulfate ^a	853.00	_	3.44	1,110.00	_	14.00	NA	4.55	_
Nitrogen, ammonia	1.16	_	0.35	0.72	_	0.14	NA	0.10	_
Specific conductance ^b	2.110	_	100	ND	_	ND	NA	86.7	_
Total dissolved solids ^a	1,470	_	21	1,340		51	NA	15.0	_
Total suspended solids	9	_	1	22	_	1	NA	1	_
Acidity, total	8.7	_	ND	5.4	_	ND	NA	ND	_
Alkalinity, bicarbonate	146.0	_	34.3	143.0	_	32.1	NA	23.2	_
Alkalinity, carbonate	ND	_	10.0	ND	_	6.8	NA	6.0	_
Alkalinity, total	147.0	_	45.8	144.0	_	40.0	NA	30.6	_
pH ^{ab}	7.75	_	9.49	7.71	_	9.35	NA	9.44	_

Volatile organic compounds (µ	g/L)								
2-Butanone	ND	_	ND	ND	_	ND	NA	ND	_
Acetone	ND	_	ND	ND	_	ND	NA	ND	_
Acrolein	ND		ND	ND		ND	NA	ND	_
Benzene	ND		ND	ND	_	ND	NA	ND	_
m,p-Xylene	ND	_	0.4	ND	_	ND	NA	ND	_
Methylene chloride	ND	_	ND	ND	_	ND	NA	ND	_
o-Xylene	ND	_	0.3	ND	_	ND	NA	ND	_
Toluene	ND	_	1.9	ND	_	ND	NA	0.2	_
Semivolatile organic compound	is (mg/L)								
Bis(2-ethylhexyl)phthalate	ND	_	0.0091	ND	_	ND	NA	0.0108	_
Naphthalene	ND	_	ND	ND	_	ND	NA	ND	_
Phenanthrene	ND	_	ND	ND	_	ND	NA	ND	_
Miscellaneous (mg/L)									
TPH (diesel range)	0.26	_	ND	ND	_	ND	NA	ND	_
TPH (oil range)	ND	_	ND	ND	_	ND	NA	ND	_
Sulfate-reducing bacteriab	NA	_	NA	NA	_	5,500	NA	NA	_


Note: ND = not detected; NA = not analyzed. ^aAnalytes detected at least once at or above one environmental guideline comparison value are marked in bold.

^bThe specific conductance is given in mS/cm, the pH is given in SU, and the bacterial numbers are given in CFU/mL.

C ASCE

05014004-6

J. Environ. Eng.

HOBET MINING LLC- PLANT

PO BOX 305

MADISON, WV 25130

304-369-8132

Safe Drinking Water Information System (SDWIS)

- Operated by the EPA
- Violations are frequently "Monitoring, Regular" (MR)
- Very few instances, if any, of MLC violations

"**NOTICE:** EPA is aware of inaccuracies and underreporting of some data in the Safe Drinking Water Information System. We are working with the states to improve the quality of the data."

Type of Violation	Compliance Period Begin Date	Compliance Period End Date	Drinking Water Rule or Contaminant	Violation ID
PN Violation for NPDWR Violation	JAN-20-2005	JUL-26-2012	Public Notice	193105

Follow-up Action	Date of Response
St Compliance achieved	JUL-26-2012
St AO (w/o penalty) issued	OCT-07-2008
St Formal NOV issued	FEB-05-2005

Type of Violation	Compliance Period Begin Date	Compliance Period End Date	Drinking Water Rule or Contaminant	Violation ID
Monitoring, Regular	JAN-01-2005	DEC-31-2007	Arsenic	194509

Follow-up Action	Date of Response
St AO (w/o penalty) issued	OCT-07-2008
St Compliance achieved	AUG-20-2008
St Public Notif received	FEB-20-2008
St Formal NOV issued	FEB-02-2008
St Public Notif requested	FEB-02-2008

Type of Violation	Compliance Period Begin Date	Compliance Period End Date	Drinking Water Rule or Contaminant	Violation ID
Monitoring, Regular	JAN-01-2005	DEC-31-2007	1,2,4-Trichlorobenzene	194510

Let's consider the what could be happening in theory....

Formation Potential - Microbial Processes

- Anaerobic microbes have the greatest potential for the methylation of Hg, especially those with metabolic pathways for sulfates.*
- decreased pH increases formation potential of Me-Hg*
- increased DOC increases formation potential of Me-Hg*
- "...insoluble mercuric
- sulfide (HgS) will be methylated in aerobic sediments at rates 100 to 1.000 times
- slower than for the less strongly bound HgCl₂ (Olson and Cooper 1976)."*
- A sulfate concentration of 200-500 µM in the water column is optimal for mercury methylation by SRB in sediment (Gilmour and Henry 1991).
- Humic and Fulvic acid interactions → Sulphur group of Humic substances

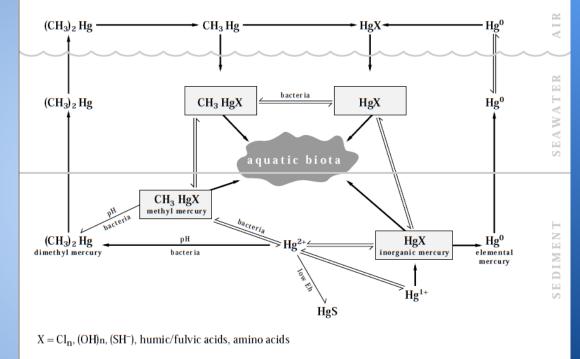
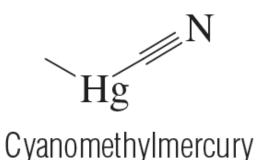
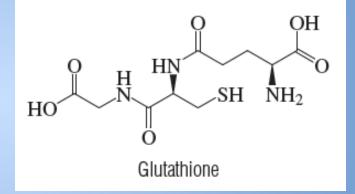




Figure 1. Important pathways of mercury speciation in the aquatic environment.

*Contan Pouls on togues of the state of the

Example Methylmercury Compounds

A potential methylmercury compound

Very important transporter for plants; sulfur group particularly important for Hg binding affinity

David R. Lide, ed., <u>CRC Handbook of Chemistry and Physics</u>, Internet Version 2005, <http://www.hbcpnetbase.com>, CRC Press, Boca Raton, FL, 2005.

More Common Examples in Aquatic Systems: CH₃HgOH <----> CH₃HgCI

Salinity: Dependence on Cl⁻ concentration

Nonetheless, the most important factor in methylation of Hg is presence and reactivity of microbes

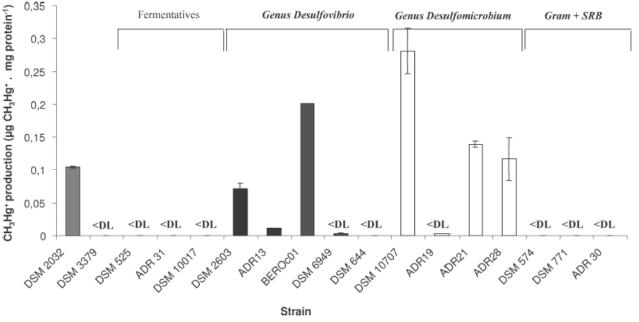
M. Ranchou-Peyruse et al <u>Overview of Mercury Methylation</u> <u>Capacities among Anaerobic Bacteria Including Representatives of the</u> <u>Sulphate-Reducers: Implications for Environmental Studies</u>. <u>Geomicrobiology Journal</u>, 26: 1-8, 2009. Taylor and Francis Group

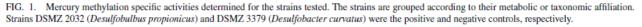
Abstract:

- Methylation only by delta-Proteobacteria
- Taxonomy/phylogeny does not predict methylation potential (16s rRNA analysis) Introduction:
 - Acetyl-CoA pathway is a primary method of methylation
- Complete mechanistic descriptions of methylation still not understood
- Prior studies have varying initial concentrations of $Hg^{2+} \rightarrow this$ study sought to observe methylation at low initial concentration: 10 µg * L⁻¹

TABLE 1

List of the strains tested, protein production and number of divisions during the mercury methylation experiments.


Strain	Name	$\begin{array}{c} \text{Protein} \\ \text{production} \\ (\text{mg. } L^{-1}) \end{array}$	n
DSM 2032	Desulfobulbus propionicus strain 1 pr3	40.7	5.0
DSM 2603	Desulfovibrio africanus	15.8	4.1
ADR 13	Desulfovibrio africanus	21.9	2.5
DSM 6949	Desulfovibrio desulfuricans subsp. desulfuricans	18.4	2.1
DSM 644	Desulfovibrio vulgaris strain Hildenborough	14.1	3.1
BEROc 1	Desulfovibrio caledoniensis	15.1	1.6
DSM 10707	Desulfomicrobium escambiense	18.3	2.6
ADR 19	Desulfomicrobium sp.	12.3	1.9
ADR 21	Desulfomicrobium salsuginis	15.4	2.3
ADR 28	Desulfomicrobium salsuginis	18.2	4.5
DSM 3379	Desulfobacter curvatus	30.3	3.1
DSM 771	Desulfotomaculum acetoxidans	2.3	1.3
DSM 574	Desulfotomaculum nigriFicans	1.3	0.8
ADR 30	Desulfosporosinus sp.	9.8	2.3
DSM 525	Clostridium pasteurianum	7.2	1.6
ADR 31	Clostridium sp.	6.3	2.3
DSM 10017	Syntrophobacter fumaroxidans	4.0	1.6


TABLE 2 Comparison of the mercury methylation capacities determined for two reference strains <i>Desulfobulbus propionicus</i> (DSMZ 2032) and <i>Desulfovibrio africanus</i> (DSMZ 2603).							
Strain	$\begin{array}{c} Hg^{2+} \text{ added} \\ (\mu g \cdot L^{-1}) \end{array}$	$\begin{array}{c} Methylation \\ rate \ (ng \cdot \ L^{-1} \cdot h^{-1}) \end{array}$	Methylation yield (μ g. mg ⁻¹ of protein)	Reference			
Desulfobulbus propionicus (1 pr3 / DSM 2032)	1 10 100	10.6 ± 1.5 86.04 ± 4.72 1.05 ± 30.4 12.0 ± 5.6	0.104 ± 0.001	Ekstrom <i>et al.</i> , 2003 This study King <i>et al.</i> , 2000			
Desulfovibrio africanus (DSM 2603)	1 10	12.9 ± 5.6 22.81 ± 2.50	0.072 ± 0.007	Ekstrom <i>et al.</i> , 2003 This study			

M. RANCHOU-PEYRUSE ET AL.

TABLE 1

List of the strains tested, protein production and number of divisions during the mercury methylation experiments.

M. Ranchou-Peyruse et al <u>Overview of Mercury Methylation</u> <u>Capacities among Anaerobic Bacteria Including Representatives of</u> <u>the Sulphate-Reducers: Implications for Environmental Studies</u>. <u>Geomicrobiology Journal</u>, 26: 1-8, 2009. Taylor and Francis Group

Strain	n Name		n
DSM 2032	Desulfobulbus propionicus strain 1 pr3	40.7	5.0
DSM 2603	Desulfovibrio africanus	15.8	4.1
ADR 13	Desulfovibrio africanus	21.9	2.5
DSM 6949	Desulfovibrio desulfuricans subsp. desulfuricans	18.4	2.1
DSM 644	Desulfovibrio vulgaris strain Hildenborough	14.1	3.1
BEROc 1	Desulfovibrio caledoniensis	15.1	1.6
DSM 10707	Desulfomicrobium escambiense	18.3	2.6
ADR 19	Desulfomicrobium sp.	12.3	1.9
ADR 21	Desulfomicrobium salsuginis	15.4	2.3
ADR 28	Desulfomicrobium salsuginis	18.2	4.5
DSM 3379	Desulfobacter curvatus	30.3	3.1
DSM 771	Desulfotomaculum acetoxidans	2.3	1.3
DSM 574	Desulfotomaculum nigriFicans	1.3	0.8
ADR 30	Desulfosporosinus sp.	9.8	2.3
DSM 525	Clostridium pasteurianum	7.2	1.6
ADR 31	Clostridium sp.	6.3	2.3
DSM 10017	Syntrophobacter fumaroxidans	4.0	1.6

Results and Discussion

- Rxn rates of methylation varied from prior studies; it should be noted that prior studies used initial ionic Hg concentrations which were 100-10,000 times higher
- Methylation is "strain dependent," NOT species or genus dependent

6

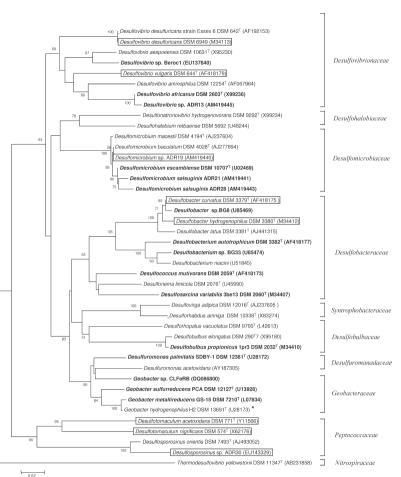
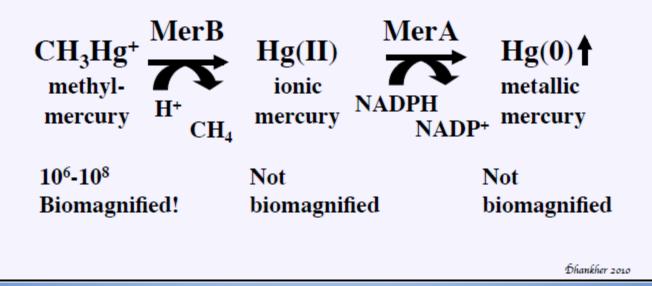
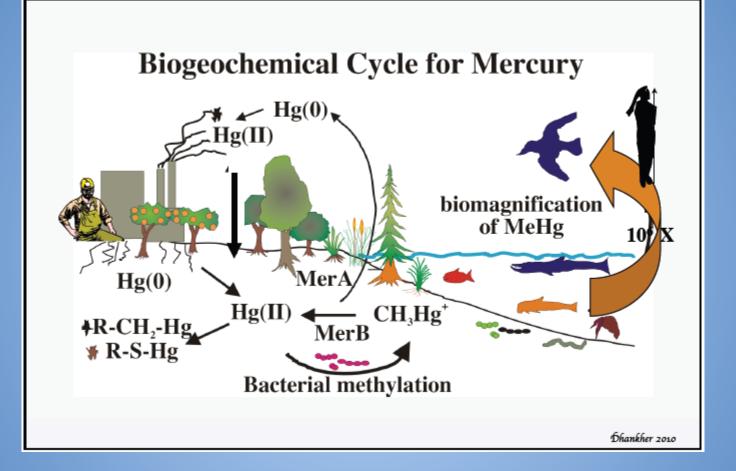



FIG. 2. Phylogenetic tree based on the 16S rRNA gene showing the position of available sequences of strains tested for their mercury methylation capacities within the delta-Proteobacteria and the Clostridia classes. Tree was generated using the neighbour-joining analysis. All accession numbers are indicated. White rectangle: no mercury methylation capacity. Bold typed: mercury methylation capacity. *: These strains were indicated as mercury methylators in Kerin et al. (2006). Nevertheless, methylation levels were extremely low and similar to some of the controls.


Transformation by Organisms -Vice Versa

- Mercurial lyase (encoded by MerB gene): transforms methylmercury (CH_3) - $(Hg)^+$ --> Hg⁺²; forms by moving e's from Mercury to methyl group to form CH₄
- Mercurial reductase (encoded by MerA gene): reduces Hg(⁺²) --> to Hg⁰; forms by oxidizing NADPH --> NADP⁺ • bacteria with "mer operon"

Two bacterial enzymes transform mercury species to less toxic states

Credit: Dr. Om Parkash

Credit: Dr. Om Parkash

Transformation by Organisms

Examples:

- Hg⁰ --> Hg²⁺ + 2e⁻ : non-enzymatic, Bacillus, Pseudomonas
- Hg²⁺ + 2e⁻ --> Hg⁰: detoxification, Pseudomonas, Streptomyces; Bacillus, Vibro; Alcaligenes, Acinetobacter (Based on Hg resistance)

Eldor A. Paul. Soil Microbiology, Ecology, and Biochemistry. 3rd edition

Organic and Inorganic Forms Solubility

- Hg has a strong binding affinity for Selenium and Sulfur (e.g. glutathione in plants - active sulfur group for transport to cell vacuole)
- FeS₂ (pyrite) commonly found in coal formations
- Note that all sampled ground injection sites had a pH range [7.7, 9.6]*
- low pH necessary to mobilize bound mercury
- soils naturally neutral or acidic (as low as 5.4 pH typical)

*Aken, Benoit. et al. <u>Environmental Contaminants in Coal</u> <u>Slurry Intended for Underground Injection in the State of</u> <u>West Virginia</u>. Journal of Environmental Engineering. August. 2014

Phyto/Bioremediation

glutathione (GSH) + Hg⁺² --> GS-Hg (stored in vacuoles); thus if we increase glutathione expression (GSH synthetase, gamma-glutamylcysteine synthetase, and phytochelatin synthase) more mercury will be stored in vacuoles and cause less damage to hyperaccumulating plant.

Phyto/Bioremediation

merB merA *merB* merA WT A&B WT A&B 0 ppm 0.2 ppm A&B A&B 1 ppm 2 ppm

Co-expression of *merA & merB* produces the highest levels of methylmercury resistance and processing!

Dhankher 2010

Credit: Dr. Om Parkash

Applications to Forming Models and Solutions

- How do we model baseflow/groundwater flow in these regions (West Virginia, Kentucky)? Especially after mountaintop removal alters flood routing and fundamental hydrology of a watershed
- Characterizing the soil and subsoil conditions is critical to predict potential water source contamination
- Understanding metabolic pathways of methylation and demethylation, as well as reaction rates of each, and influencing factors is essential. The primary transformations of Hg are conducted by microbes.

Applications to forming models and solutions - Remediation Strategies

What plants are currently required and/or being used for mountain-top reclamation? How are these plants doing? What are soil conditions like when the mining is done and reclamation begins? How do these plants modify the soil over time?

► <u>To next lecture</u>