CEE 697z
Organic Compounds in Water and Wastewater

Outline

- Many ways to “slice the NOM Pie”
- Concentrations
- Characteristics
 - Size, elemental composition, functional groups
- Structures
 - Mass spectrometry with and without various levels of degradation
- General Reactivity

It’s one of my favorite recipes. I call it Fulvic Acid.
I. NOM Structure & Selected Properties

- A. Bulk Organic Matter
 - occurrence
 - simple bulk properties
 - Elemental analysis
 - absorbance
 - Know structural elements
 - bulk functionality
 - specific structures
 - General reactivity with treatment chemicals
 - THM FP, other DBP FPs

II. NOM Structure (cont.)

- B. NOM from specific source types
 1. allochthonous or pedogenic
 - lignins & non-humics
 2. autochthonous or aquogenic
 - algal (AOM)
 3. wastewater effluent organics (EfOM)
 - soluble metabolic products
 4. Major biochemical constituents
 - lignin, proteins, terpenoids, tannins, others
III. NOM Structure (cont.)

C. Subcomponents from bulk NOM

- hydrophobic acids (humics)
 - humic and fulvic acids
- Hydrophilic acids
 - meso to philic to ultra
- Neutral fractions
 - phobic, philic
- Base fractions
 - phobic, philic

In many cases we have the same characterization for these groups that we have for the bulk organic mater.

How to measure NOM

- Identify and quantify individual compounds
 - expensive and may only account for 10%
 - not practical
- Fractionate, extract and weigh
 - comprehensive, but time-consuming
 - doesn’t tell us precisely what the stuff is
- Use a collective or “gross” measurement
 - TOC, UV absorbance, DBP precursors
 - easiest method, useful for engineering purposes
TOC analysis

Principle: oxidize all organic matter to Carbon dioxide and water. Then measure the amount of carbon dioxide produced

\[C_a H_b N_c O_d + \left(a + \frac{b}{4} - \frac{d}{2} \right) O_2 \rightarrow aCO_2 + \frac{b}{2} H_2 O + \frac{c}{2} N_2 \]

Oxidation
- High Temperature Pyrolysis
- UV Irradiation
- Heated Persulfate
- UV/Persulfate

Particulate-C vs. Dissolved-C

- Particulate organic carbon
 - larger than about 1 micron
 - determined by what is retained in laboratory filtration
 - algae, bacteria, protozoa, organics adsorbed to clays
- Dissolved organic carbon (DOC)
 - from simple molecules to large biopolymers
 - determined from the TOC of a filtered sample
 - typically comprises 90-98% of the TOC
Fractionation & Nomenclature

- Total Carbon (TC)
 - Inorganic Carbon (IC)
 - Total Organic Carbon (TOC)
 - Purgeable Organic Carbon (POC)
 - Non-purgeable Organic Carbon (NPOC)

Methods of Fractionation

- Resin-based
 - Usually XAD resins
 - May combine with ion exchange resins
- Evaporative or RO
- RO & ED
 - Drewes et al., 2002 WQTC
 - Perdue
Simple Hydrophobicity Test

- **Hydrophobic NOM**
 - Retained on XAD-8
 - TOC#1-TOC#2

- **Mesophilic NOM**
 - Retained on XAD-4, but not on XAD-8
 - TOC#2-TOC#3

- **Hydrophilic NOM**
 - Not retained
 - TOC#3

Mini-XAD Lab setup
Simple Hydrophobicity Test

- Hydrophobic NOM
 - Retained on XAD-8
 - TOC#1-TOC#2
- Mesophilic NOM
 - Retained on XAD-4, but not on XAD-8
 - TOC#2-TOC#3
- Hydrophilic NOM
 - Not retained
 - TOC#3

Simple Hydrophobicity Test #2

- Back elution with NaOH
- Allows recovery of fractions and check of direct fractionation
- Desorbable hydrophobics = TOC#4
- Desorbable mesophilics = DOC #5
Analysis of Hydrophobicity

A. Water Sample → Humic Substances
 - XAD-8
 - Eluent
 - XAD-8
 - Eluent
 - XAD-4
 - Eluent
 - XAD-4
 - Eluent
 - RO
 - Permeate
 - Hydrophilic NOM (Retentate)

B. Rotary Evaporator → Condensate
 - Test Water
 - XAD-8
 - Humics
 - NaOH
 - APS from UF
 - SPP is not retained

NOM Pool Fractionation

- Back elution with NaOH
- Allows recovery of fractions and check of direct fractionation
- Humics elute from XAD-8
- APS from UF
- SPP is not retained
Polarity Rapid Assessment Method (PRAM)

Figure 1 Experimental setup for PRAM. SPE cartridges contained 100 mg of sorbent with a total volume of 1.5 mL and average pore size of 60 Å. The retention coefficient (RC) is calculated based on the maximum breakthrough concentration and the initial concentration. C-18, C-8, and C-2 are nonpolar sorbents; Silica, Diol, and Cyanide (CN) are polar sorbents; Amino (NH-2) is a weak anion exchanger and SAX is the strong anion exchanger.

Differences between UMass method and the Rosario-Ortiz method are in red.

Published in: Fernando L. Rosario-Ortiz; Shane Snyder; I. H. (Mel) Suffet; Environ. Sci. Technol. 2007, 41, 4895-4900. DOI: 10.1021/es062151t

Copyright © 2007 American Chemical Society

The Humics and Non-humics: Comprehensive NOM Fractionation

Water Sample

Filter

Hydrophobic Resin
Amberlite XAD-8

Cation Exchange Resin
MSC-1

Anion Exchange Resin
Duolite A-7

Hydrophobic Bases
Weak Hydrophobic Acids
Hydrophobic Neutrals

Hydrophilic Bases

Humic Acid
Fulvic Acid

Hydrophilic Neutrals

Hydrophilic Acids

Leenheer & Noyes, 1984

MSC-1
Proposed Assignments for Organic Fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colloidal</td>
<td>Bacterial peptidoglycan cell wall components (hydrophilic neutral)</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td></td>
</tr>
<tr>
<td>Acids</td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>tannins; phenols; intermediate MW alkyl monocarboxylic acids (C5-C8), dicarboxylic acids (C8-C11)</td>
</tr>
<tr>
<td>Strong</td>
<td>fulvic acids; humic acids; high MW alkyl monocarboxylic acids (≥C9), and dicarboxylic acids (≥C12); aromatic acids</td>
</tr>
<tr>
<td>Bases</td>
<td>amphoteric proteinaceous materials; high MW (JC12) alkyl amines; alkyl pyridines; aromatic amines</td>
</tr>
<tr>
<td>Neutrals</td>
<td>hydrocarbons; high MW (≥C6) methyl ketones; furans; most ethers; high MW (≥C5) alkyl alcohols, and aldehydes; lactones; pyrrole, alkyl aromatic sulfonates</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td></td>
</tr>
<tr>
<td>Acids</td>
<td>hydroxy acids; sugar acids; sulfonic acids; low MW alkyl monocarboxylic acids (C1-C4), and dicarboxylic acids (C2-C7)</td>
</tr>
<tr>
<td>Bases</td>
<td>low MW (C1-C11) alkyl amines; amino acids; purines; pyrimidines; pyridine; hydroxy pyridines</td>
</tr>
<tr>
<td>Neutrals</td>
<td>polysaccharides; Low MW (C1-C4) alkyl alcohols, aldehydes, and ketones; polyketones; amides, N-acetyl amino sugars, non-carbohydrate alcohols</td>
</tr>
</tbody>
</table>

+Based on: Leenheer and Noyes, 1984; Leenheer et al., 1982; and Reckhow et al., 1992

The Humic Substances

- Analytically defined
 - Humic & fulvic acids
- True structure is unknown
 - Many ideas
- Chemical Characterization
 - Elemental Composition
 - Aromaticity: High
 - Functional Groups: Moderate acidity
 - Molecular Size: Moderate
 - Absorbance: High
Elemental Composition: Humics

Elemental Composition of Aquatic Humic Substances
(average of 15 riverine samples, after Thurman, 1985)

<table>
<thead>
<tr>
<th>Fraction</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>P</th>
<th>S</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulvic</td>
<td>51.9</td>
<td>5.0</td>
<td>40.3</td>
<td>1.1</td>
<td>0.2</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Humic</td>
<td>50.0</td>
<td>4.7</td>
<td>39.6</td>
<td>2.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

High oxygen content
FA and HA Similar, except:
• humics tend to have more N

Elemental Analysis

From: Perdue & Ritchie, 2004
Elemental Ratios

- Van Krevelen Plot

From: Perdue & Ritchie, 2004

Size of NOM

0.45 µm

Particulate

Relative Size of Natural Organic Carbon

FA=fatty acids; CHO=carbohydrates; AA=amino acids; HC=hydrocarbons
(Modified from: Thurman, 1985)
Molecular Size

- **Ultrafiltration**
 - series vs parallel
 - membrane calibration
- **Size Exclusion Chromatography**
 - HPSEC vs LC
- **Others**
 - Vapor Pressure Osmometry

Molecular Size: Ultrafiltration

- **Humic Acid**
 - Polydisperse
 - Moderate to large

- **Fulvic Acid**
 - Polydisperse
 - Moderate to large
Molecular size: non-humics

Abundance of high-molecular size compounds in Seven Organic Fractions
(from Reckhow et al., 1993)

From: Perdue & Ritchie, 2004
HPSEC

- Effective size
- UV abs or DOC detection

- Requires size calibration

```
<table>
<thead>
<tr>
<th>Effective Molecule Weight (Da)</th>
<th>Normalized Absorbance at 254 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e+2</td>
<td>0.000</td>
</tr>
<tr>
<td>1e+3</td>
<td>0.002</td>
</tr>
<tr>
<td>1e+4</td>
<td>0.004</td>
</tr>
<tr>
<td>1e+5</td>
<td>0.006</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.008</td>
</tr>
<tr>
<td>1e+8</td>
<td>0.010</td>
</tr>
<tr>
<td>1e+10</td>
<td>0.012</td>
</tr>
</tbody>
</table>
```

- Comparison of HPSEC with FFFF
 - be careful of solute: gel interactions
 - Pelekani et al., 1999 [ES&T, 2807]
Aromaticity: 13C-NMR

![Aromatic and Aliphatic Content of Aquatic Humic Substances](from Reckhow et al., 1990)

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Percent Aromatic</th>
<th>Percent Aliphatic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Range</td>
</tr>
<tr>
<td>Fulvic</td>
<td>17</td>
<td>14-19</td>
</tr>
<tr>
<td>Humic</td>
<td>32</td>
<td>30-35</td>
</tr>
</tbody>
</table>
Carbon type: 13C-NMR

Westerhoff et al., 1996

Impact of Origin

More allochthonous
Higher MW

C/N Ratio

Aromatic/Aliphatic Ratio

Lignin origin

Algal origin
Showing “end-members” from McKnight

![Graph showing C:N vs. AR/AL-1 ratio for various aquatic environments.]

Functional Groups: Humics

- **Phenolic Group**
- **Carboxyl Groups**

Functional Group Content of Aquatic Humic Substances (meq/g, After Thurman, 1985)

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Carboxyl</th>
<th>Phenolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulvic</td>
<td>5.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Humic</td>
<td>4.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Source of electrical charge; responsible for coagulant demand
Functional Groups: non-humics

Net Organic Charge on Seven Aquatic Organic Fractions from Forge Pond
(After Reckhow et al., 1993)

From: Perdue & Ritchie, 2004
Size and Charge Relationships for NOM Fractions
from: Bezbarua and Reckhow, 1995

Functional Groups and Complexation

- Complexation with Coagulants, Major Cations and Heavy Metals
 - soluble complexes
 - surface complexes (insoluble)

- Role of organic structure
 - Enolate > Amine > Azo Compounds > Carboxyl > Ether > Ketone
 - bidentate > monodentate
 - geometry

- Role of metal: the Irving-Williams series:
 - Fe^{3+}>Al^{3+}>Pb^{2+}>Hg^{2+}>Cu^{2+}>Ni^{2+}>Zn^{2+}>Co^{2+}>Fe^{2+}>Mn^{2+}>Cd^{2+}>Ca^{2+}>Mg^{2+}
An Aquatic Humic “Structure”

- Features
 - Aromatic rings
 - Reactive with oxidants
 - Aliphatic carbon chains
 - Many oxygenated groups that can bind with coagulants
 - Phenolic -OH
 - Aliphatic -OH
 - Carboxylic (COOH)

Other Concepts

- From Suwanee River FA characterization
 - A. Simple view
 - B. With an N (anthranillic acid – type)
 - C. Containing a semiquinone free radical

Averett et al., 1988

Dave Reckhow - Organics
To next lecture