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Conclusions

“Overall the model calculations suggest that

biodegradation is.....not likely to play a major role in
most water distribution systems”

“the conditions needed for significant HAA removals in a
distribution system (i.e., total biomass densities > 10°
cells/cm? over long distances of pipe) are unlikely in the US
water distribution systems where total chlorine residuals

typically are high and thus inhibit the development of biofilm
on pipe walls”

But this seems to contradict their introductory conclusion - how to reconcile?
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What could they have concluded?
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Obijective /hypothesis

4
71 Not really stated, but they did end the intro with:

“In this work, computer simulations were performed to predict
the fate of three HAAs (MCAA, DCAA, and TCAA) along a
distribution system and within a biologically active filter.
Sensitivity analyses were performed to investigate the effects

of physical parameters (e.g., fluid velocity) and biological

parameters (e.qg., biodegradation kinetics, biomass density) on
HAA removal”
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What could they have said?

To determined if observed HAA loss could be
attributed to biodegradation on pipe walls given
known physical and microbial characteristics of
distribution systems

To estimate spatial and temporal variability of HAA
concentrations based on a rational physical model
of biodegradation in distribution systems
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What could they have done?

Find some direct evidence for biodegradation of
HAAs in distribution systems

A product of the enzymatic reaction?

Chlorohydroxyacetate?

Evidence of abiotic reactions?
Increase in MCAA?
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Biofilm formation:
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What should be done next?

Experimental Work

In-situ controlled study of flow velocity vs DCAA loss in
a pipe segment?

Effect of biocide in above segment?
Model Refinement
Account for internal mass transfer resistance

Combine with growth model for HAA degraders
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7 B1: biologically fixed bacteria

1 B2: adsorbed bacteria

Input Internal Processes Output
(H1, H2, B3)

Co,

Mortality
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Summary of equations used to compute the

mass transfer rate constants for the distribution
system and biologically active filter

Biologically
Active Filter

Notation

TABLE 2
Distribution
System
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SE[]..‘IZ{
Shi..
Ky = - 5 w
3 pl'l-'
N o=———
Pully
R dup,,
i‘lll'

CEE 679 Kinetig

Sh = 1.09e-2/3

R{ul.".‘ﬁ Scl.-“r
ShD.
J':m - I' "
{ n
SC Lt F’IH'
Pl

Re = dpvpy
(L—e)p,,

s Lecture #19

d = pipe diameter

i, = filter media grain
diameter

D, = solute diffusion coeffi-
cient in water

km = mass transter rate
constant

Re = Reynolds number

S¢ = Schmidt number

Sh = Sherwood number

u = water flow velocity

v = filtration rate

€ = bed porosity

i, = water viscosity at 200C

e = Water densitybataA ¥ mow




B TABLE3 General parameter values used for the model calculations

Parameter Symbol Value References/Observations
Water temperature T 200C Simulated summer conditions
Water viscosity 1, 200C 1.0087 = 10-3 kg m~1 s-1 Reynolds & Richards, 1996
Water density Py, 200C 998.2 kg m-3 Reynolds & Richards, 1996
Diffusion coefficient of MCAA in water Dy mcaa 1.12 x 10-9 m2 s-1 Zhang et al, 2004
Diffusion coefficient of DCAA in water Dy Mcan 1.02 x 102 m? s} Zhang et al, 2004
Diffusion coefficient of TCAA in water D, 1caa 9.75 x 10-10 m2 -1 Zhang et al, 2004

DCAA—dichloroacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

TABLE 4 Parameter values used to simulate the fate of haloacetic acids in water distribution systems

Parameter Symbol

Range

References

Total bacterial density p
on the pipe wall

Pipe diameter o
Water flow velocity i
Pipe distance X

10-108 cells/cm?; 107 cells/cm? for
simulations in which other
parameters were varied

2-36 in,; 6 in. for simulations in
which other parameters were varied

(0.1-4 fps; 2 fps for simulations in
which other parameters were varied

0—100 mi; 10 mi for simulations in

whiHERIQA Rakinetics hegfureidd 1 9

Silhan et al, 2006; Lehtola et al, 2004; Chang et al,
2003; Ollos et al, 2003; Zhang et al,2002; Niquette et al,
2000; Donlan & Pipes, 1988; LeChevalier et al, 1987

McGhee, 1991; Rhoades, 1986

McGhee, 1991
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Effect of Zn on HAAs

Effect of Zinc on the Transformation of HAAs in
Drinking Water

Wei Wang and Lizhong Zhu
Journal of Hazardous Materials 174:40-46.
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1 Many ways of illustrating the steps

Enzymatic Reactions

Substrate(s) bond to active site
Product(s) form via transition state

Product(s) are released
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Note that some

Basic Enzyme Kinetics reforences use k,

/ for k_;, and k; for k,
k2

ES 5 E + P

Irreversible k
E+S

E

=~

Single intermediate |

The overall rate is determined by the RLS, k,

dfs]_d[P]_, [ES]
dt dt °

But we don’t know [ES], so we can get it by the SS mass

balance d[dEtS] 0=k [E][S]-k_[ES]-kK,[ES]

Again, we only know [E_] or [E, ], not free [E], so:

0=k, ([E,]-[ESINS]-K ,[ES]-K,[ES]
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Reactants, products and Intermediates

1 Simple Progression of [Sol
components for simple
single intermediate enzyme
reaction

Shaded block shows steady
state intermediates

Assumes [S]>>[E],

From Segel, 1975; Enzyme

Kinetics _
CEE 679 | : : T ——

Concentration

[Ely = [E] + [ES]

Time



Basic Enzyme Kinetics |l

7 And solving for [ES],

KES]IS]+K,[ES]+ K [EST=K[E,][S]

kl[Eo][S]

[ES]= k[ST+k , +k,

[E, ][S]

ES
B8] = oyt
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Michaelis-Menten

1 lrreversible 3 K
E+S &= ES > E +P
Single intermediate <
d[P
= 9Py rEs)
dt
[ES]+
\/

[ ] Z[Eo][S]_ rmax[S]

dt M i[S] K, +[S]

CEE 679 Kinetics Lecture #19

[E, ][S]

[S]+ 54"

David A. Reckhow




Michaelis Menten Kinetics

1 Classical substrate plot
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U

Substrate and growth

If we consider Y r= d[P] _ d[S]_1dX

dt dt Y dt

We can define a microorganism-specific substrate

utilization rate, U ax
U _ ' _ dt _H
X YX Ty

And the maximum rates are then ; _, _ “m

1 d[S]_ KIS] o o LAXT gy [S]
X dt K. +[S] X dt K _+[S]
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Linearizations
o]

1 Lineweaver-Burke

Double reciprocal plot
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1/0,

Slope = I{M/Vmax

[S]=5Ky
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Voet & Voet version
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Lineweaver - Burk
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Compare predictions

Hanes
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Multi-step SN
Double intermediate
Also gives:
. d[P] r..[S]
dt K, +[S]
But now: \/
- _kk[E,] « _Ka(ky+k,)
K, 4k, Tk, + kK

Note what happens when: k; >> k,
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O To next lecture
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1 Many ways of illustrating the steps

Enzymatic Reactions

Substrate(s) bond to active site
Product(s) form via transition state
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Note that some

Basic Enzyme Kinetics reforences use k,

/ for k_;, and k; for k,
k2

ES 5 E + P

Irreversible k
E+S

E

=~

Single intermediate |

The overall rate is determined by the RLS, k,

dfs]_d[P]_, [ES]
dt dt °

But we don’t know [ES], so we can get it by the SS mass

balance d[dEtS] 0=k [E][S]-k_[ES]-kK,[ES]

Again, we only know [E_] or [E, ], not free [E], so:

0=k, ([E,]-[ESINS]-K ,[ES]-K,[ES]
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Reactants, products and Intermediates

1 Simple Progression of [Sol
components for simple
single intermediate enzyme
reaction

Shaded block shows steady
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Basic Enzyme Kinetics |l

_ 30 |
7 And solving for [ES],

KES]IS]+K,[ES]+ K [EST=K[E,][S]

kl[Eo][S]

[ES]= k[ST+k , +k,

[E, ][S]

ES
B8] = oyt
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Michaelis-Menten

1 lrreversible 3 K
E+S &= ES > E +P
Single intermediate <
d[P
= 9Py rEs)
dt
[ES]+
\/

[ ] Z[Eo][S]_ rmax[S]

dt M i[S] K, +[S]
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Michaelis Menten Kinetics

1 Classical substrate plot
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U

Substrate and growth

If we consider Y r= d[P] _ d[S]_1dX

dt dt Y dt

We can define a microorganism-specific substrate

utilization rate, U ax
U _ ' _ dt _H
X YX Ty

And the maximum rates are then ; _, _ “m

1 d[S]_ KIS] o o LAXT gy [S]
X dt K. +[S] X dt K _+[S]
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Linearizations
"3 ]

1 Lineweaver-Burke
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Compare predictions
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Multi-step SN
Double intermediate
Also gives:
. d[P] r..[S]
dt K, +[S]
But now: \/
- _kk[E,] « _Ka(ky+k,)
K, 4k, Tk, + kK

Note what happens when: k; >> k,
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