

Enrichment Culture or Isolate*	Bacterial Source	k—µg HAA∕ µg protein	К _М µg/L	k _r —L/d/ protein
Experimentally determined values† MCAA kinetics				
WWM	Activated sludge enriched on MCAA	8.4 ± 1.5	97.7 ± 44.8	0.08
DCAA kinetics				
WWD	Activated sludge enriched on DCAA	47.0 ± 1.8	26.5 ± 5.6	1.72
PAWD	Pennsylvania tap water enriched on DCAA	9.36 ± 0.48	7.79 ± 5.82	1.2
PAWDI	Isolate from PAWD on DCAA	6.48 ± 0.48	77.91 ± 16.14	0.08
EMD2E	United Kingdom tap water enriched on DCAA	32.88 ± 0.72	4.38 ± 2.22	7.51
EMD2	Isolate from EMD2E on DCAA	23.28 ± 0.72	10.42 ± 3.61	2.23
TCAA kinetics				
WWT	Activated sludge enriched on TCAA	6.6 ± 0.6	210.7 ± 37.9	0.03
Estimated values:				1
MCAA kinetics				
PAWM	MCAA-degrading enrichment	ND	ND	0.058
PAWMI	MCAA-degrading isolate	ND	ND	0.004
EMM2E	MCAA-degrading enrichment	ND	ND	0.3
EMM2	MCAA-degrading isolate	ND	ND	0.11
TCAA kinetics				
PAWT	TCAA-degrading enrichment	ND	ND	0.020
PAWTI	TCAA-degrading isolate	ND	ND	0.00
EMT2E	TCAA-degrading enrichment	ND	ND	0.1
EMT2	TCAA-degrading isolate	ND	ND	0.03

5	TABLE 2 Sur mai sys	nmary of equations transfer rate of tem and biologic	ons used to compute the constants for the distribution ally active filter
	Distribution System	Biologically Active Filter	Notation
	$Sh = 0.023 \text{ Re}^{0.83}$ $Sc^{0.33}$ $k_m = \frac{ShD_w}{d}$ $Sc = \frac{\mu_w}{\rho_w D_w}$	$Sh = 1.09\epsilon^{-2/3}$ $Re^{1/3} Sc^{1/3}$ $k_m = \frac{ShD_w}{d_p}$ $Sc = \frac{\mu_w}{\rho_w D_w}$	$d = pipe diameter$ $d_p = filter media grain diameter D_w = solute diffusion coeffi- cient in water k_m = mass transfer rate constant Re = Reynolds number$
	$Re = \frac{du\rho_w}{\mu_w}$	$\operatorname{Re} = \frac{d_{p} v \rho_{w}}{(1 - \epsilon) \mu_{w}}$	Sc = Schmidt number Sh = Sherwood number u = water flow velocity v = filtration rate ϵ = bed porosity μ_w = water viscosity at 20°C
	CEE 679 Kinetic	es Lecture #18	$\rho_{W} = water density_{Datid2002Ckhow}$

TABLE 3 General pa	arameter val	ues used for the model ca	lculations		
Paramet	er	Symbol		Value	References/Observatio
Water temperature		Т	20°C		Simulated summer condition
Water viscosity		μ _w 20°C	1.0082	7 × 10 ⁻³ kg m ⁻¹ s ⁻¹	Reynolds & Richards, 1996
Water density		р _w 20°С	998.2	kg m ⁻³	Reynolds & Richards, 1996
Diffusion coefficient of M	ICAA in water	D _{wMCAA}	1.12 ×	10-9 m ² s ⁻¹	Zhang et al, 2004
Diffusion coefficient of I	CAA in water	$D_{w,MCAA}$	1.02 ×	$10^{-9} \text{ m}^2 \text{ s}^{-1}$	Zhang et al, 2004
Diffusion coefficient of T	CAA in water	$D_{w,TCAA}$	9.75 ×	10-10 m ² s ⁻¹	Zhang et al, 2004
			ne aciu		
TABLE 4 Parameter	r values used	d to simulate the fate of ha	loacetic ac	ids in water distrit	oution systems
TABLE 4 Parameter	r values used	d to simulate the fate of ha Range	loacetic ac	ids in water distrit	nution systems References
TABLE 4 Parameter Parameter Total bacterial density on the pipe wall	r values used Symbol ρ	t to simulate the fate of ha Range 10–10 ⁸ cells/cm ² ; 10 ⁷ cells/c simulations <i>in</i> which other parameters were varied	m ² for	ids in water distrit Silhan et al, 2006; 1 2003; Ollos et al, 2 2000; Donlan & P	References Reforences ehtola et al, 2004; Chang et al, 2003; Zhang et al,2002; Niquette pes, 1988; LeChevalier et al, 198
TABLE 4 Parameter Parameter Total bacterial density on the pipe wall Pipe diameter	r values used Symbol ρ d	to simulate the fate of ha Range 10–10 ⁸ cells/cm ² ; 10 ⁷ cells/c simulations <i>in</i> which other parameters were varied 2–36 in.; 6 in. for simulatior which other parameters we	na actic ac	ids in water distrit Silhan et al, 2006; 1 2003; Ollos et al, 2 2000; Donlan & P McGhee, 1991; Rho	References ehtola et al, 2004; Chang et al, 2003; Zhang et al,2002; Niquette pes, 1988; LeChevalier et al, 198 pades, 1986
TABLE 4 Parameter Parameter Total bacterial density on the pipe wall Pipe diameter Water flow velocity	symbol ρ d u	to simulate the fate of ha Range 10–10 ⁸ cells/cm ² ; 10 ⁷ cells/c simulations <i>in</i> which other parameters were varied 2–36 in.; 6 in. for simulation which other parameters we 0.1–4 fps; 2 fps for simulation which other parameters we	loacetic ac	ids in water distrit Silhan et al, 2006; I 2003; Ollos et al, 2 2000; Donlan & P McGhee, 1991; Rho McGhee, 1991	References

		39
	□ <u>To next lecture</u>	
	CEE 470 Kingdigs Lasting #19	
A. Reckhow	CEE 679 Kinetics Lecture #18	