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Statistics

Error types
Analytical measurements
Constant vs. proportional vs in-between
Experimental conditions
e.g., pH, temperature
Model error

Need for homoskedasticity

Use best transformation (or none at all)
Use log for data with errors directly proportional to concentration
No transform for data with constant error
Use data weighting for other error distributions

Plot residuals to determine heteroskedasticity
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Figure 2-10. (a) Sketches showing effects of (1) proportional and (2) constant error on
hypothetical reactant vs. time curves; (3) relative error is constant fraction of [A]
for i

error, but (4 tant error leads t ive error as.
[A] decreases. (b) Locally optimal solution (¥*) and true optimum (V) in
CEE 679 Kine regression analysis; RSS = root mean sum of squares.
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Kinetic Spectrum Analysis
(e

71 For mixtures of many closely related compounds

A new continuum of rate constants
®mE.g., NOM —

Kinetic: Shuman model [CL = Z[Ci]oe’ki‘
i=1

Equilibria: Perdue model

Very general, but highly subject to errors
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Seasonal Variability & Biodegradation
6]
o1 Chen & Weisel study
0 JAWWA, April 1998
7 Intensive study of Elizabethtown, NJ system
125 MGD conventional plant

4.9 mg/L DOC (raw water average)
pH 7.2
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Elizabethtown, NJ: THMs
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HAA Degradation

E

0 Biodegradation:
dihaloacetic acids degrade more readily than
trihaloacetic acids

On BAC
5 MHAA>DHAA>THAA
Wu & Xie, 2005 [JAWWA 97:11:94]
In distribution systems
m DHAA>MHAA>THAA
Many studies
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Degradation in Dist. Systems
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Degradation of HAAs

Norwood, MA example
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Why the loss of HAAs?

Homogeneous Chemical Decomposition ¢

Decarboxylation
Cl

Cl——C—
\.e

o
What is half-life ¢ co,

Is it oo slow to be very important?

Dehalogenation
Probably too slow for chlorinated HAAs

Reaction with reduced pipe materials?

Abiotic reductive dehalogenation not likely either,
especially for DCAA

Biodegradation?
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/O 1 o fast
~ Sa W CHCl; ——  CHCl
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A few recent studies

Modeling HAA Biodegradation in Biofilters and
Distribution Systems

Alina S. Grigorescu and Ray Hozalski, University of
Minnesota at Minneapolis

Journal AWWA, July 2010, 102(7)67-80
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Background conclusion?

“Thus aerobic biodegradation is believed to be the
dominant HAA degradation process in .........wafer
distribution systems”
Citing: Tung & Xie, 2009; Zhang et al., 2009a; 2009b;
Bayless & Andrews, 2008
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Obijective /hypothesis

01 Not really stated, but they did end the intro with:

“In this work, computer simulations were performed to predict
the fate of three HAAs (MCAA, DCAA, and TCAA) along a
distribution system and within a biologically active filter.
Sensitivity analyses were performed to investigate the effects

of physical parameters (e.q., fluid velocity) and biological

parameters (e.q., biodegradation kinetics, biomass density) on
HAA removal”
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Transport Model

71 Loss of HAAs in a pipe

One dimensional plug flow
C — Coe_koverall (%J)

Overadll rate is a combination of rate of
biodegradation (k,,) and mass transfer (k

1

I(overall = %ma n %ra

ma)
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Biodegradation model

Monod model

dC _ kXC
dt Ky +C
Simplified for low C
€ __ K ye=kxc
dt Ky
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Biodegradation model

Biodegradation rate (k. ; in day™') is the pseudo-
first order biodegradation rate constant (k; in
L/day/Mg-protein) times the biofilm density (X; in
Mg-protein/cm?) and the specific surface area (a; in
m')

4kr X (100m2m )

L

K, = k, Xa(teem'n ) -

Where d is the pipe diameter in meters
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TABLE 1 Summary of kinetic parameter values used in the model calculations
Enrichment Culture \‘ k—pg HAA/ ‘ Ky / k—L/d/ug
or Isolate” Bacterial Source g protein Hg/L protein
Experimentally determined valuest |
MCAA kinetics
WWM Activated sludge enriched on MCAA 84+ 1.5 97.7 £+ 44.8 0.086
DCAA Kinetics
wwD Activated sludge enriched on DCAA 470+ 1.8 265456 1.77
PAWD Pennsylvania tap water enriched on DCAA 9.36 £ 0.48 7.79£5.82 1.2
PAWDI Isolate from PAWD on DCAA 6.48 £ 0.48 77.91 £16.14 0.083
EMD2I United Kingdom tap water enriched on DCAA 32.88 £ 0.72 4384222
EMD2 Isolate from EMD2E on DCAA 23.28 £ 0.72 10.42 £ 3.61
TCAA kinetics
WWT \ctivated sludge enriched on TCAA 66106 210.7 £37.9 0.03
Estimated valuest ‘
MCAA kinetics
PAWM MCAA-degrading enrichment ND ND 0.0588
PAWMI MCAA-degrading isolate ND ND 0.0041
EMM2E MCAA-degrading enrichment ND ND 0.37
EMM2 MCAA-degrading isolate ND ND 0.11
TCAA kinetics
PAWT TCAA-degrading enrichment ND ND 0.0204
PAWTI TCAA-degrading isolate ND ND 0.0014
EMTZE TCAA-degrading enrichment ND ND 0.13
EMT2 ‘ TCAA-degrading isolate ND ND 0.038
DCAA—dichloreacetic acid, HAA—haloacetic acid, A—maximum specific utilization rate, K,—substrate cancentration at which the biodegradation rate is half of the
maximum rate, k,—pseudo-first-order biodegradation rate constant, MCAA—monochloroacetic acid, ND—not determined, TCAA—trichloroacetic acid
“Initialisms for bacterial strains are not literal. For additional details about these strains, see Zhang et al, 2009b
ot erE A by nmh.:}-l\|w::‘r:fl‘:‘;agg:aqu:tkjmﬁﬂﬁs becturacttlS cultures and isolates by K,y ks wivn (0-049) Ddwid, AsRebkhows

Mass Transfer Model |
=n

0 Mass transfer constant (k.. ) is the mass transfer velocity (k. ;

mq)
m/s) times the specific surface area; and k_, is related to the
Sherwood number

k -k a L

m

Compare to equ

combining 7.126 in Clark

ShD,  4ShD,
K.,=k.,a= a=—-:
d d
0 Linton & Sherwood (1950) found the following correlation for
flow in pipes (fn(Reynolds and Schmidt numbers)):

Sh — 0.023 Re0.83 SC0.33 Eq 7.164 in Clark
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Mass Transfer Model |l
=

01 The Schmidt number is the ratio of mass to viscous diffusion
timescales, and calculated from the viscosity, the density and
the diffusion coefficient:

SC — A (7:osn21|?arzllokequ
pw DW .82 in Clar

01 And the Reynolds number can be calculated from the pipe
diameter, velocity, density and viscosity:

Re = dup,
H
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FIGURE 1 Effect of culture and HAA-degrader biomass
density on the biodegradation of MCAA, DCAA,

Mo d e I P re d icll'i O n S and TCAA in a water distribution system
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For these simulations, the pipe length was 10 mi, the pipe diameier
was 6 in., and the water flow velocity was 2 fps.

Initialisms for bacterial strains are not literal. For adghiti W ils .
about these strains, see Zhang et al, 2009b. e Riffetics Lecn
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Impact of biomass density

—@— kg MCAA

Ko TCAA
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Impact of flow velocity
N

Cc D
008121 Ky MCAA 0.00109 @ k,,, DCAA
Ko TCAA —3— K DCAA
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Impact of Pipe Diameter

F
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Simulations were performed using the kinetic par for F ¥ tap water cultures (i.e., PAWM, PAWD, PAWT).

For parts A and B, the water velocity was 2 fps, and the pipe diameter w:

biomass density was 0.1 ug protein/cm’.

CEE 0/Y Kinefics Lecture # 18

as 6 in. For parts C and D, the HAA-degrader biomass

density was 0.1 ug protein/cm” and the Ffpe diameter was 6 in. For parts E and F, the water flow velocity was 2 fps, and the HAA-degrader

David A. Reckhow

Combining
=]

FIGURE 5 Effect of distance (A), pipe diameter (B), and
water flow velocity (C) on the fate of MCAA,
DCAA, and TCAA in a water distribution system
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Simulations were performed using the kinetic parameters for
sylvania tap water enri cultures (i.e., PAWM, PAWD,
PAWT). For part A, the pipe diameter was 6 in., and the water flow
velocity was 2 fps. For part B, the water flow velocity was 2 fps, and
the pipe length was 10 mi. For part C, the pipe diameter was 6 in.,
€and the pipe length was 10 mi. The HAA-degrader biomass density
was 0.1 ug protein/em’” in all simulations.
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Conclusions

01 “Overall the model calculations suggest that
biodegradation is.....not likely to play a major role in
most water distribution systems”

“the conditions needed for significant HAA removals in a
distribution system (i.e., total biomass densities > 10°
cells/cm? over long distances of pipe) are unlikely in the US
water distribution systems where total chlorine residuals
typically are high and thus inhibit the development of biofilm
on pipe walls”

But this seems to contradict their introductory conclusion - how to reconcile?
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What could they have concluded?
En

o1 Variability vs diurnal demand
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0 David A. Reckhow
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Obijective /hypothesis

Not really stated, but they did end the intro with:

“In this work, computer simulations were performed to predict
the fate of three HAAs (MCAA, DCAA, and TCAA) along a
distribution system and within a biologically active filter.
Sensitivity analyses were performed to investigate the effects

of physical parameters (e.q., fluid velocity) and biological

parameters (e.q., biodegradation kinetics, biomass density) on
HAA removal”
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What could they have said?

To determined if observed HAA loss could be
attributed to biodegradation on pipe walls given
known physical and microbial characteristics of
distribution systems

To estimate spatial and temporal variability of HAA
concentrations based on a rational physical model
of biodegradation in distribution systems

CEE 679 Kinetics Lecture #18 David A. Reckhow
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What could they have done?

Find some direct evidence for biodegradation of
HAAs in distribution systems

A product of the enzymatic reaction?
Chlorohydroxyacetate?
Evidence of abiotic reactions?
Increase in MCAAZ2

CEE 679 Kinetics Lecture #18
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Biofilm formation:
Attachment Colonization Growth
What else? e~ -
o < S AR F S
n{; ‘;z 0‘453,5 -c.:o
Consider mass AN A
. oo | cSPREIRE e | aSERERBINTL
transfer P SR s %
resistance within EEEEEETETE——
biofilm

avid A. Reckhow
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What should be done nexi?
=

o Experimental Work
In-situ controlled study of flow velocity vs DCAA loss in
a pipe segment?
Effect of biocide in above segment?
1 Model Refinement
Account for internal mass transfer resistance

Combine with growth model for HAA degraders
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o B1: biologically fixed bacteria

1 B2: adsorbed bacteria

=1 SANCHO Model

Input Internal Processes Output
(H1, H2, B3)

cl,

Mortality

I

|
®

Fixed Bacteria
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TABLE 2

Distribution
System

Biologically
Active Filter

Summary of equations used to compute the
mass transfer rate constants for the distribution
system and biologically active filter

Notation

Sh =0.023 Re?83 | Sh = 1.09e-2/3

§c0.33 Rel/3 §cl/3
ShD,, ShD
’\m = * Kin'= —
d d
o
['u‘[ hy "\r“u
s dup,, Re = dyvpy,
Hy (1 -en,

CEE 679 Kinetigs Lecture #18

d = pipe diameter

n’{, = filter media grain
diameter

D, = solute diffusion coeffi-
cient in water

k,, = mass transfer rate
constant

Re = Reynolds number
Sc = Schmidt number
Sh = Sherwood number

« = water flow velocity

v = filtration rate

m

= bed porosity
11, = water viscosity at 200C

Py = water densityoa20ffino.

[E TABLE3

General parameter val

Parameter

ues used for the model calculations

References/Observations

Water temperature

Water viscosity

Water density

Diffusion coefficient of MCAA in water
Diffusion coefficient of DCAA in water

Diffusion coefficient of TCAA in water

1.0087 x 10-3 kg m-1 51

Symbol Value
T 20°C

iy, 20°C

y 200C 998.2 kg m-3
Dy vcan 1.12 % 109 m2 571
Dy mean 1.02 x 10- m? s-1
Dy rcan 9.75 x 10-10 m? 5°!

Simulated summer conditions
Reynolds & Richards, 1996
Reynolds & Richards, 1996
Zhang et al, 2004

Zhang et al, 2004

Zhang et al, 2004

DCAA—dichloroacetic acid, MCAA—monochl,

aroacetic acid, TCAA—trichloroacetic acid

Parameter values used to simulate the fate of haloacetic acids in water distribution systems

TABLE 4
Parameter Symbol Range References
Total bacterial density p 10-108 cells/cm?; 107 cells/em? for Silhan et al, 2006; Lehtola et al, 2004; Chang et al,
on the pipe wall simulations in which other 2003; Ollos et al, 2003; Zhang et al,2002; Niquette ct al,

parameters were varied 2000; Donlan & Pipes, 1988; LeChevalier et al, 1987

Pipe diameter d 2-36in.; 6 in. for simulations in McGhee, 1991; Rhoades, 1986
which other parameters were varied

Water flow velocity u 0.1-4 fps; 2 fps for simulations in McGhee, 1991
which other parameters were varied

Pipe distance 0-100 mi; 10 mi for simulations in
whiGERIGZ RaKinetias heatureidd1 8 David A. Reckhow
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FIGURE 4 Effect of HAA-degrader biomass density (A and B, fitration rate (C and D), and fiter grain diameter
(E and F) on the biodegradation rate constant &y, mass transfer rate constant kg, and the overal rate
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For parts A and 8, 14 10 m/h, and ! ter was 0.75 mm. For parts C and D, the HAA- rader

biomass density was 0.1 pg proteinicm’ and the fiter grain diameter was 0.75 mm. For parts E and F. filtration eate was 10 m/n, and

Effect of Zn on HAAs

01 Effect of Zinc on the Transformation of HAAs in
Drinking Water

Wei Wang and Lizhong Zhu
= Journal of Hazardous Materials 174:40-46.
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O To next lecture
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