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Statistics

Error types
Analytical measurements
Constant vs. proportional vs in-between
Experimental conditions
e.g., pH, temperature
Model error

Need for homoskedasticity

Use best transformation (or none at all)
Use log for data with errors directly proportional to concentration
No transform for data with constant error
Use data weighting for other error distributions

Plot residuals to determine heteroskedasticity
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Figure 2-10. (a) Sketches showing effects of (1) proportional and (2) constant error on

hypothetical reactant vs. time curves; (3) relative error is constant fraction of [A]
for proportional error, but (4) constant error leads to increasing relative error as
[A] decreases. (b) Locally optimal solution (Y’) and true optimum (¥) in
regression analysis; RSS = root mean sum of squares.



Kinetic Spectrum Analysis

For mixtures of many closely related compounds

A new continuum of rate constants

Eg, NOM —
Kinetic: Shuman model [C], = Z[Ci]oe—kit
i—1

Equilibria: Perdue model

Very general, but highly subject to errors
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Seasonal Variability & Biodegradation
o
1 Chen & Weisel study
0 JAWWA, April 1998

1 Intensive study of Elizabethtown, NJ system
125 MGD conventional plant

4.9 mg/L DOC (raw water average)
pH 7.2
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Elizabethtown, NJ: THMs
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Elizabethtown, NJ: TCAA
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HAA Degradation

Biodegradation:

dihaloacetic acids degrade more readily than
trihaloacetic acids

On BAC
MHAA>DHAA>THAA
Wu & Xie, 2005 [JAWWA 97:11:94]

In distribution systems

DHAA>MHAA>THAA
Many studies
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Degradation in Dist. Systems

Town Hall; Norwood, MA Pier 1; Norwood, MA
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Degradation of HAAs

Norwood, MA example
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Why the loss of HAAs?

Homogeneous Chemical Decomposition ¢

Decarboxylation
Cl

| — /O slow fast

D P CHCI® 5 CHCl,
| \© i
Cl

What is half-life co,

s it too slow to be very important?

Dehalogenation
Probably too slow for chlorinated HAAs

Reaction with reduced pipe materials?

Abiotic reductive dehalogenation not likely either,
especially for DCAA

Biodegradation?
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A few recent studies

Modeling HAA Biodegradation in Biofilters and
Distribution Systems

Alina S. Grigorescu and Ray Hozalski, University of
Minnesota at Minneapolis

Journal AWWA, July 2010, 102(7)67-80

CEE 679 Kinetics Lecture #18 David A. Reckhow



Background conclusion@

“Thus aerobic biodegradation is believed to be the
dominant HAA degradation process in .........water
distribution systems”

Citing: Tung & Xie, 2009; Zhang et al., 2009a; 2009b;
Bayless & Andrews, 2008
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Obijective /hypothesis

15
71 Not really stated, but they did end the intro with:

“In this work, computer simulations were performed to predict
the fate of three HAAs (MCAA, DCAA, and TCAA) along a
distribution system and within a biologically active filter.
Sensitivity analyses were performed to investigate the effects

of physical parameters (e.g., fluid velocity) and biological

parameters (e.qg., biodegradation kinetics, biomass density) on
HAA removal”

CEE 679 Kinetics Lecture #18 David A. Reckhow



Transport Model

Loss of HAAs in a pipe

One dimensional plug flow
C — Coe_koverall (%)

Overall rate is a combination of rate of
biodegradation (k) and mass transfer (k

. B 1

overall ~— %ma n %ra

mal
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Biodegradation model
B

= Monod model

dc _ kXC
dt K, +C
0 Simplified for low C
9€ __ K xc=—k xc
it K,
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Biodegradation model |l

. in day™') is the pseudo-

Biodegradation rate (k. ;

first order biodegradation rate constant (k. ; in
L/day/Ug-protein) times the biofilm density (X; in
Ug-protein/cm?) and the specific surface area (qg; in
m')

4kr X (1Ocm2m)

L

K, =k, Xa(on )=

Where d is the pipe diameter in meters
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TABLE 1 Summary of kinetic parameter values used in the model calculations

Enrichment Culture k—ug HAA/ Ky k—L/d/pg
or Isolate* Bacterial Source ug protein pg/L protein
Experimentally determined valuest
MCAA Kinetics
WWM Activated sludge enriched on MCAA 84+ 1.5 97.7+ 448 0.086
DCAA kinetics
WWD Activated sludge enriched on DCAA 47.0+1.8 26.5+5.6 1.77
PAWD Pennsylvania tap water enriched on DCAA 9.36 £ 0.48 7.79 £ 5.82 1.2
PAWDI Isolate from PAWD on DCAA 6.48 £ 0.48 77.91 £16.14 0.083
EMD2E United Kingdom tap water enriched on DCAA 32.88£0.72 4384222 7.51
EMD2 Isolate from EMDZE on DCAA 23.28+0.72 10.42 + 3.61 2.23
TCAA Kinetics
WWT Activated studge enriched on TCAA 6.6 0.6 210.7 £ 37.9 0.03
Estimated valuest
MCAA kinetics
PAWM MCAA-degrading enrichment ND ND 0.0588
PAWMI MCAA-degrading isolate ND ND 0.0041
EMM2E MCAA-degrading enrichment ND ND 0.37
EMM2 MCAA-degrading isolate ND ND 0.11
TCAA Kinetics
PAWT TCAA-degrading enrichment ND ND 0.0204
PAWTI TCAA-degrading isolate ND ND 0.0014
EMT2ZE TCAA-degrading enrichment ND ND 0.13
EMT2 TCAA-degrading isolate ND ND 0.038

DCAA—dichloroacetic acid, HAA—haloacetic acid, &—maximum specific utilization rate, Ky—substrate concentration at which the biodegradation rate Is half of the

maximum rate, k,—pseudo-first-order biodegradation rate constant, MCAA—monochloroacetic acid, ND-—not determined, TCAA—trichloroacetic acid

*Initialisms for bacterial strains are not literal. For additional details about these strains, see Zhang et al, 2009b,

+The average k and K), values were used for calculat
iThe k, values were calculated by multiplying the ¢

(0.017).

j 5 Alyea. .
;:EE;Q‘X}QaKm%T'@ﬁ beciur@ kbl cultures and isolates by k, wsilkr wwp (0.049) @dwid, AaRekkhow,




Mass Transfer Model |

Mass transfer constant (k__) is the mass transfer velocity (k,;

m/s) times the specific surface area; and k_ is related to the

Sherwood number ShD
kma p— kma km — d w
.. Compare to equ
combining 7.126 in Clark

 _p o_ShD, _ 4shD,

ma m d d2

Linton & Sherwood (1950) found the following correlation for
flow in pipes (fn(Reynolds and Schmidt numbers)):

Sh = 0.023Re%® g0 Eq 7.164 in Clark
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Mass Transfer Model |l

The Schmidt number is the ratio of mass to viscous diffusion
timescales, and calculated from the viscosity, the density and
the diffusion coefficient:

Hy,

— Compare to equ
SC
yo, D 7.82 in Clark
w w

And the Reynolds number can be calculated from the pipe
diameter, velocity, density and viscosity:

Re = dup,
Hy
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FIGURE 1 Effect of culture and HAA-degrader biomass
density on the biodegradation of MCAA, DCAA,

MO d e I P re d icll'i ons and TCAA in a water distribution system
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DCAA Removal—2%

For these simulations, the pipe length was 10 mi, the pipe diameter
was 6 in., and the water flow velocity was 2 fps.

Initialisms for bacterial strains are not literal. For ad@gg’ i W ils_ ..
about these strains, see Zhang et al, 2009b. K‘l#e'rlcs Lech




Impact of biomass density
N

A B
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Impact of flow velocity
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Impact of Pipe Diameter

F
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DCAA—dichloroacetic acid, HAA—haloacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

Simulations were performed using the kinetic parameters for Pennsylvania tap water enrichment cultures (i.e., PAWM, PAWD, PAWT).

For parts A and B, the water velocity was 2 fps, and the pipe diameter was 6 in. For parts C and D, the HAA-degrader biomass
density was 0.1 ug protein/cm” and the ;.vfpe diameter was 6 in. For parts E and F, the water flow velocity was 2 fps, and the HAA-degrader
biomass density was 0.1 pyg protein/em".
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Combining

FIGURE 5 Effect of distance (A), pipe diameter (B), and
water flow velocity (C) on the fate of MCAA,
DCAA, and TCAA in a water distribution system
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DCAA—dichloroacetic acid, HAA—haloacetic acid,
MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

Simulations were performed using the kinetic parameters for
Pennsylvania tap water enrichment cultures (i.e., PAWM, PAWD,
PAWT). For part A, the pipe diameter was 6 in., and the water flow
velocity was 2 fps. For part B, the water flow velocity was 2 fps, and
the pipe length was 10 mi. For part C, the pipe diameter was 6 in.,
and the pipe length was 10 mi. The HAA-degrader biomass density
was 0.1 ug protefn/cmz in all simulations.



Conclusions

“Overall the model calculations suggest that

biodegradation is.....not likely to play a major role in
most water distribution systems”

“the conditions needed for significant HAA removals in a
distribution system (i.e., total biomass densities > 10°
cells/cm? over long distances of pipe) are unlikely in the US
water distribution systems where total chlorine residuals

typically are high and thus inhibit the development of biofilm
on pipe walls”

But this seems to contradict their introductory conclusion - how to reconcile?
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What could they have concluded?

01 Variability vs diurnal demand
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Obijective /hypothesis

29
71 Not really stated, but they did end the intro with:

“In this work, computer simulations were performed to predict
the fate of three HAAs (MCAA, DCAA, and TCAA) along a
distribution system and within a biologically active filter.
Sensitivity analyses were performed to investigate the effects

of physical parameters (e.g., fluid velocity) and biological

parameters (e.qg., biodegradation kinetics, biomass density) on
HAA removal”

CEE 679 Kinetics Lecture #18 David A. Reckhow



What could they have said?

To determined if observed HAA loss could be
attributed to biodegradation on pipe walls given
known physical and microbial characteristics of
distribution systems

To estimate spatial and temporal variability of HAA
concentrations based on a rational physical model
of biodegradation in distribution systems
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What could they have done?

Find some direct evidence for biodegradation of
HAAs in distribution systems

A product of the enzymatic reaction?

Chlorohydroxyacetate?

Evidence of abiotic reactions?
Increase in MCAA?
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Biofilm formation:
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http://upload.wikimedia.org/wikipedia/commons/4/4a/Biofilm.jpg

What should be done next?

Experimental Work

In-situ controlled study of flow velocity vs DCAA loss in
a pipe segment?

Effect of biocide in above segment?
Model Refinement
Account for internal mass transfer resistance

Combine with growth model for HAA degraders
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7 B1: biologically fixed bacteria

1 B2: adsorbed bacteria

Input Internal Processes Output
(H1, H2, B3)

Co,

Mortality
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Summary of equations used to compute the

mass transfer rate constants for the distribution
system and biologically active filter

Biologically
Active Filter

Notation

TABLE 2
Distribution
System
Sh = 0.023 Re!) 83

SE[]..‘IZ{
Shi..
Ky = - 5 w
3 pl'l-'
N o=———
Pully
R dup,,
i‘lll'

CEE 679 Kinetig

Sh = 1.09e-2/3

R{ul.".‘ﬁ Scl.-“r
ShD.
J':m - I' "
{ n
SC Lt F’IH'
Pl

Re = dpvpy
(L—e)p,,

s Lecture #18

d = pipe diameter

i, = filter media grain
diameter

D, = solute diffusion coeffi-
cient in water

km = mass transter rate
constant

Re = Reynolds number

S¢ = Schmidt number

Sh = Sherwood number

u = water flow velocity

v = filtration rate

€ = bed porosity

i, = water viscosity at 200C

e = Water densitybataA ¥ mow




JFE TABLE3 General parameter values used for the model calculations

Parameter Symbol Value References/Observations
Water temperature T 200C Simulated summer conditions
Water viscosity 1, 200C 1.0087 = 10-3 kg m~1 s-1 Reynolds & Richards, 1996
Water density Py, 200C 998.2 kg m-3 Reynolds & Richards, 1996
Diffusion coefficient of MCAA in water Dy mcaa 1.12 x 10-9 m2 s-1 Zhang et al, 2004
Diffusion coefficient of DCAA in water Dy Mcan 1.02 x 102 m? s} Zhang et al, 2004
Diffusion coefficient of TCAA in water D, 1caa 9.75 x 10-10 m2 -1 Zhang et al, 2004

DCAA—dichloroacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

TABLE 4 Parameter values used to simulate the fate of haloacetic acids in water distribution systems

Parameter Symbol Range References
Total bacterial density p 10-108 cells/cm?; 107 cells/cm? for Silhan et al, 2006; Lehtola et al, 2004; Chang et al,
on the pipe wall simulations in which other 2003; Ollos et al, 2003; Zhang et al,2002; Niquette et al,

parameters were varied 2000; Donlan & Pipes, 1988; LeChevalier et al, 1987

ipe diameter o 2-36 in,; 6 in. for simulations in McGhee, 1991; Rhoades, 1986
which other parameters were varied

Water flow velocity u (0.1-4 fps; 2 fps for simulations in McGhee, 1991
which other parameters were varied

Pipe distance X (0-100_mi; 10 mi for simulations in
Wl1it¢1&ﬁ]@78&l@ﬁﬁﬂ§§ heatureidd] 8 David A. Reckhow
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Effect of HAA-degrader biomass density (A and B), filtration rate (C and D), and filter grain diameter

(E and F) on the biodegradation rate constant k,,, mass transfer rate constant k,,;, and the overall rate

constant Koz for a biologically active filter
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Effect of Zn on HAAs

Effect of Zinc on the Transformation of HAAs in
Drinking Water

Wei Wang and Lizhong Zhu
Journal of Hazardous Materials 174:40-46.

CEE 679 Kinetics Lecture #18 David A. Reckhow



O To next lecture
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