Lecture #18

Chloramines with Surface Reactions: Pipe walls & degradation in Distribution Systems

Primary Literature

David A. Reckhow

Introduction
Breakpoint
Reactions

\[ \text{NH}_3 \]

\[ \text{HOCI} \]

\[ \text{NH}_2\text{Cl} \]

\[ \text{NHCl}_2 \]

\[ \text{NCl}_3 \]

\[ \text{N}_2 \]

\[ \{ \frac{1}{2} \text{NO}_3 \} \]

\[ 2\text{HCl} + \frac{1}{2} \text{H}^+ \]

\[ \text{HOCI} + \text{HCl} \]

\[ 2\text{HOCl} + 3\text{HCl} \]
Error types
- Analytical measurements
  - Constant vs. proportional vs in-between
- Experimental conditions
  - e.g., pH, temperature
- Model error

Need for homoskedasticity
- Use best transformation (or none at all)
  - Use log for data with errors directly proportional to concentration
  - No transform for data with constant error
  - Use data weighting for other error distributions
- Plot residuals to determine heteroskedasticity
Figure 2-10. (a) Sketches showing effects of (1) proportional and (2) constant error on hypothetical reactant vs. time curves; (3) relative error is constant fraction of [A] for proportional error, but (4) constant error leads to increasing relative error as [A] decreases. (b) Locally optimal solution (\(\hat{Y}'\)) and true optimum (\(\hat{Y}\)) in regression analysis; RSS = root mean sum of squares.
For mixtures of many closely related compounds

- A new continuum of rate constants
  - E.g., NOM
  - Kinetic: Shuman model
  - Equilibria: Perdue model

- Very general, but highly subject to errors

\[ [C]_t = \sum_{i=1}^{n} [C_i]_0 e^{-k_it} \]
Seasonal Variability & Biodegradation

- Chen & Weisel study
- JAWWA, April 1998
- Intensive study of Elizabethtown, NJ system
  - 125 MGD conventional plant
  - 4.9 mg/L DOC (raw water average)
  - pH 7.2
Elizabethtown, NJ: THMs

- . . Residence time—zero days
- . . Residence time—three days

![Graph showing THMs concentration over time with sampling dates from 9/19/91 to 1/31/93. The graph compares THMs concentrations with different residence times.](image)
Elizabethtown, NJ: TCAA

- ■ Residence time—zero days
- ▼ Residence time—three days

Graph showing Trichloroacetic Acid (μg/L) over time from 9/19/91 to 1/31/93 with specific dates marked for sampling.
Biodegradation:

- Dihaloacetic acids degrade more readily than trihaloacetic acids.

On BAC:
- MHAA > DHAA > THAA
  - Wu & Xie, 2005 [JAWWA 97:11:94]

In distribution systems:
- DHAA > MHAA > THAA
  - Many studies
Degradation in Dist. Systems

Example: Norwood, MA
Degradation of HAAs

Norwood, MA example

![Graph showing the HAA/THM Ratio (µg/µg) with percentile on the x-axis and the ratio on the y-axis. Two lines represent Town Hall and Pier 1, with Town Hall showing degradation and Pier 1 showing no degradation.](image_url)
Why the loss of HAAs?

- Homogeneous Chemical Decomposition?
  - Decarboxylation
    - What is half-life
      - Is it too slow to be very important?
  - Dehalogenation
    - Probably too slow for chlorinated HAAs
- Reaction with reduced pipe materials?
  - Abiotic reductive dehalogenation not likely either, especially for DCAA
- Biodegradation?
A few recent studies

- Modeling HAA Biodegradation in Biofilters and Distribution Systems
  - Alina S. Grigorescu and Ray Hozalski, University of Minnesota at Minneapolis

  Journal AWWA, July 2010, 102(7)67-80
“Thus aerobic biodegradation is believed to be the dominant HAA degradation process in water distribution systems”

Citing: Tung & Xie, 2009; Zhang et al., 2009a; 2009b; Bayless & Andrews, 2008
Not really stated, but they did end the intro with:

“In this work, computer simulations were performed to predict the fate of three HAAs (MCAA, DCAA, and TCAA) along a distribution system and within a biologically active filter. Sensitivity analyses were performed to investigate the effects of physical parameters (e.g., fluid velocity) and biological parameters (e.g., biodegradation kinetics, biomass density) on HAA removal.”
Transport Model

- Loss of HAAs in a pipe
  - One dimensional plug flow
    \[ C = C_0 e^{-k_{overall} \left( \frac{x}{U} \right)} \]
  - Overall rate is a combination of rate of biodegradation \( k_{ra} \) and mass transfer \( k_{ma} \)
    \[ k_{overall} = \frac{1}{\frac{1}{k_{ma}} + \frac{1}{k_{ra}}} \]
Biodegradation model

- **Monod model**

\[
\frac{dC}{dt} = -\frac{kXC}{K_M + C}
\]

- **Simplified for low C**

\[
\frac{dC}{dt} = -\frac{k}{K_M} XC \equiv -k_rXC
\]
Biodegradation rate ($k_{ra}$; in day$^{-1}$) is the pseudo-first order biodegradation rate constant ($k_r$; in L/day/µg-protein) times the biofilm density ($X$; in µg-protein/cm$^2$) and the specific surface area ($a$; in m$^{-1}$)

$$k_{ra} = k_r X a \left( \frac{10 cm^2 m}{L} \right) = \frac{4k_r X}{d} \left( \frac{10 cm^2 m}{L} \right)$$

Where $d$ is the pipe diameter in meters
<table>
<thead>
<tr>
<th>Enrichment Culture or Isolate*</th>
<th>Bacterial Source</th>
<th>$k -$μg HAA/μg protein</th>
<th>$K_M$ μg/L</th>
<th>$k_r$ -L/d/μg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentally determined values†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAA kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWWM</td>
<td>Activated sludge enriched on MCAA</td>
<td>8.4 ± 1.5</td>
<td>97.7 ± 44.8</td>
<td>0.086</td>
</tr>
<tr>
<td>DCAA kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWD</td>
<td>Activated sludge enriched on DCAA</td>
<td>47.0 ± 1.8</td>
<td>26.5 ± 5.6</td>
<td>1.77</td>
</tr>
<tr>
<td>PAWD</td>
<td>Pennsylvania tap water enriched on DCAA</td>
<td>9.36 ± 0.48</td>
<td>7.79 ± 5.82</td>
<td>1.2</td>
</tr>
<tr>
<td>PAWDI</td>
<td>Isolate from PAWD on DCAA</td>
<td>6.48 ± 0.48</td>
<td>77.91 ± 16.14</td>
<td>0.083</td>
</tr>
<tr>
<td>EMD2E</td>
<td>United Kingdom tap water enriched on DCAA</td>
<td>32.88 ± 0.72</td>
<td>4.38 ± 2.22</td>
<td>7.51</td>
</tr>
<tr>
<td>EMD2</td>
<td>Isolate from EMD2E on DCAA</td>
<td>23.28 ± 0.72</td>
<td>10.42 ± 3.61</td>
<td>2.23</td>
</tr>
<tr>
<td>TCAA kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWT</td>
<td>Activated sludge enriched on TCAA</td>
<td>6.6 ± 0.6</td>
<td>210.7 ± 37.9</td>
<td>0.03</td>
</tr>
<tr>
<td>Estimated values‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAA kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAWWM</td>
<td>MCAA-degrading enrichment</td>
<td>ND</td>
<td>ND</td>
<td>0.0588</td>
</tr>
<tr>
<td>PAWMI</td>
<td>MCAA-degrading isolate</td>
<td>ND</td>
<td>ND</td>
<td>0.0041</td>
</tr>
<tr>
<td>EMM2E</td>
<td>MCAA-degrading enrichment</td>
<td>ND</td>
<td>ND</td>
<td>0.37</td>
</tr>
<tr>
<td>EMM2</td>
<td>MCAA-degrading isolate</td>
<td>ND</td>
<td>ND</td>
<td>0.11</td>
</tr>
<tr>
<td>TCAA kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAWT</td>
<td>TCAA-degrading enrichment</td>
<td>ND</td>
<td>ND</td>
<td>0.0204</td>
</tr>
<tr>
<td>PAWTI</td>
<td>TCAA-degrading isolate</td>
<td>ND</td>
<td>ND</td>
<td>0.0014</td>
</tr>
<tr>
<td>EMT2E</td>
<td>TCAA-degrading enrichment</td>
<td>ND</td>
<td>ND</td>
<td>0.13</td>
</tr>
<tr>
<td>EMT2</td>
<td>TCAA-degrading isolate</td>
<td>ND</td>
<td>ND</td>
<td>0.038</td>
</tr>
</tbody>
</table>

DCAA—dichloroacetic acid, HAA—haloacetic acid, $k$—maximum specific utilization rate, $K_M$—substrate concentration at which the biodegradation rate is half of the maximum rate, $k_r$—pseudo-first-order biodegradation rate constant, MCAA—monochloroacetic acid, ND—not determined, TCAA—trichloroacetic acid

*Initialisms for bacterial strains are not literal. For additional details about these strains, see Zhang et al., 2009b.
†The average $k$ and $K_M$ values were used for calculating the $k_r$ values.
‡The $k_r$ values were calculated by multiplying the calculated $k_r$ values for the MCAA enrichment cultures and isolates by $k_{r,WWM}/k_{r,WWD}$ (0.049) and $k_{r,WWD}/k_{r,WWT}$ (0.017).
Mass Transfer Model I

- Mass transfer constant \( (k_{ma}) \) is the mass transfer velocity \( (k_m; \text{ m/s}) \) times the specific surface area; and \( k_m \) is related to the Sherwood number
  \[
  k_{ma} = k_m a
  \]
  \[
  k_m = \frac{ShD_w}{d}
  \]

- Linton & Sherwood (1950) found the following correlation for flow in pipes (fn(Reynolds and Schmidt numbers)):
  \[
  k_{ma} = k_m a = \frac{ShD_w}{d} a = \frac{4ShD_w}{d^2}
  \]

- Linton & Sherwood (1950) found the following correlation for flow in pipes (fn(Reynolds and Schmidt numbers)):
  \[
  Sh = 0.023 \text{ Re}^{0.83} \text{ Sc}^{0.33}
  \]

Compare to equ 7.126 in Clark
Eq 7.164 in Clark
The Schmidt number is the ratio of mass to viscous diffusion timescales, and calculated from the viscosity, the density and the diffusion coefficient:

$$Sc = \frac{\mu_w}{\rho_w D_w}$$

And the Reynolds number can be calculated from the pipe diameter, velocity, density and viscosity:

$$Re = \frac{du \rho_w}{\mu_w}$$

Compare to equ 7.82 in Clark
Model Predictions

**Figure 1** Effect of culture and HAA-degrader biomass density on the biodegradation of MCAA, DCAA, and TCAA in a water distribution system.

- **EMM2E**
- **EMM2**
- **PAWM**
- **PAWMI**
- **WWM**

**Graphs**

- **TCAA Removal (%)** vs. **HAA Degrader Biomass Density (μg protein/cm²)**
- **MCAA Removal (%)** vs. **HAA Degrader Biomass Density (μg protein/cm²)**
- **DCAA Removal (%)** vs. **HAA Degrader Biomass Density (μg protein/cm²)**

**Legend**

- **DCAA** — dichloroacetic acid
- **HAA** — haloacetic acid
- **MCAA** — monochloroacetic acid
- **TCAA** — trichloroacetic acid

For these simulations, the pipe length was 10 mi, the pipe diameter was 6 in., and the water flow velocity was 2 fps.

Initialisms for bacterial strains are not literal. For additional details about these strains, see Zhang et al., 2009b.
Impact of biomass density

![Graphs showing the impact of biomass density on kinetic rates.](image-url)
Impact of flow velocity
Impact of Pipe Diameter

DCAA—dichloroacetic acid, HAA—haloacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

Simulations were performed using the kinetic parameters for Pennsylvania tap water enrichment cultures (i.e., PAWM, PAWD, PAWT). For parts A and B, the water flow velocity was 2 fps, and the pipe diameter was 6 in. For parts C and D, the HAA-degrader biomass density was 0.1 µg protein/cm² and the pipe diameter was 6 in. For parts E and F, the water flow velocity was 2 fps, and the HAA-degrader biomass density was 0.1 µg protein/cm².
Combining

FIGURE 5 Effect of distance (A), pipe diameter (B), and water flow velocity (C) on the fate of MCAA, DCAA, and TCAA in a water distribution system.

DCAA—dichloroacetic acid, HAA—haloacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

Simulations were performed using the kinetic parameters for Pennsylvania tap water enrichment cultures (i.e., PAWM, PAWD, PAWT). For part A, the pipe diameter was 6 in., and the water flow velocity was 2 fps. For part B, the water flow velocity was 2 fps, and the pipe length was 10 mi. For part C, the pipe diameter was 6 in., and the pipe length was 10 mi. The HAA-degrader biomass density was 0.1 μg protein/cm² in all simulations.
“Overall the model calculations suggest that biodegradation is...not likely to play a major role in most water distribution systems”

“The conditions needed for significant HAA removals in a distribution system (i.e., total biomass densities > 10^5 cells/cm^2 over long distances of pipe) are unlikely in the US water distribution systems where total chlorine residuals typically are high and thus inhibit the development of biofilm on pipe walls”

But this seems to contradict their introductory conclusion – how to reconcile?
What could they have concluded?

- Variability vs diurnal demand

![Graph showing variability vs diurnal demand]
Objective/hypothesis

- Not really stated, but they did end the intro with:
  - “In this work, computer simulations were performed to predict the fate of three HAAs (MCAA, DCAA, and TCAA) along a distribution system and within a biologically active filter. Sensitivity analyses were performed to investigate the effects of physical parameters (e.g., fluid velocity) and biological parameters (e.g., biodegradation kinetics, biomass density) on HAA removal”
What could they have said?

- To determine if observed HAA loss could be attributed to biodegradation on pipe walls given known physical and microbial characteristics of distribution systems.
- To estimate spatial and temporal variability of HAA concentrations based on a rational physical model of biodegradation in distribution systems.
What could they have done?

- Find some direct evidence for biodegradation of HAAs in distribution systems
  - A product of the enzymatic reaction?
    - Chlorohydroxyacetate?
  - Evidence of abiotic reactions?
    - Increase in MCAA?
What else?

- Consider mass transfer resistance within biofilm
What should be done next?

- **Experimental Work**
  - In-situ controlled study of flow velocity vs DCAA loss in a pipe segment?
  - Effect of biocide in above segment?

- **Model Refinement**
  - Account for internal mass transfer resistance
  - Combine with growth model for HAA degraders
SANCHO Model

- **B1**: biologically fixed bacteria
- **B2**: adsorbed bacteria

**Input** (H1, H2, B3)

**Internal Processes**

- **H1**
- **H2**
- **BDOC**
- **S**
- **CO₂**
- **Cl₂**

**Output**

- **Mortality**
- **Free Bacteria**
- **B3**
- **Fixed Bacteria**
- **B2**

CEE 679 Kinetics Lecture #18

David A. Reckhow
TABLE 2  Summary of equations used to compute the mass transfer rate constants for the distribution system and biologically active filter

<table>
<thead>
<tr>
<th>Distribution System</th>
<th>Biologically Active Filter</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Sh} = 0.023 \text{Re}^{0.83} \text{Sc}^{0.33} )</td>
<td>( \text{Sh} = 1.09\epsilon^{-2/3} \text{Re}^{1/3} \text{Sc}^{1/3} )</td>
<td>( d = \text{pipe diameter} )</td>
</tr>
<tr>
<td>( k_m = \frac{\text{Sh}D_w}{d} )</td>
<td>( k_m = \frac{\text{Sh}D_w}{d_p} )</td>
<td>( d_p = \text{filter media grain diameter} )</td>
</tr>
<tr>
<td>( \text{Sc} = \frac{\mu_w}{\rho_wD_w} )</td>
<td>( \text{Sc} = \frac{\mu_w}{\rho_wD_w} )</td>
<td>( D_w = \text{solute diffusion coefficient in water} )</td>
</tr>
<tr>
<td>( \text{Re} = \frac{du\rho_w}{\mu_w} )</td>
<td>( \text{Re} = \frac{d_p\nu\rho_w}{(1 - \epsilon)\mu_w} )</td>
<td>( k_m = \text{mass transfer rate constant} )</td>
</tr>
<tr>
<td>( \text{Re} = \frac{du\rho_w}{\mu_w} )</td>
<td>( \text{Re} = \frac{d_p\nu\rho_w}{(1 - \epsilon)\mu_w} )</td>
<td>( \text{Re} = \text{Reynolds number} )</td>
</tr>
<tr>
<td>( \text{Sc} = \frac{\mu_w}{\rho_wD_w} )</td>
<td>( \text{Sc} = \frac{\mu_w}{\rho_wD_w} )</td>
<td>( \text{Sc} = \text{Schmidt number} )</td>
</tr>
<tr>
<td>( \text{Sh} = \text{Sherwood number} )</td>
<td>( \text{Sh} = \text{Sherwood number} )</td>
<td>( u = \text{water flow velocity} )</td>
</tr>
<tr>
<td>( \nu = \text{filtration rate} )</td>
<td>( \nu = \text{filtration rate} )</td>
<td>( \epsilon = \text{bed porosity} )</td>
</tr>
<tr>
<td>( \epsilon = \text{bed porosity} )</td>
<td>( \epsilon = \text{bed porosity} )</td>
<td>( \mu_w = \text{water viscosity at } 20^\circ\text{C} )</td>
</tr>
<tr>
<td>( \rho_w = \text{water density at } 20^\circ\text{C} )</td>
<td>( \rho_w = \text{water density at } 20^\circ\text{C} )</td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 3  General parameter values used for the model calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>References/Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water temperature</td>
<td>$T$</td>
<td>$20^\circ$C</td>
<td>Simulated summer conditions</td>
</tr>
<tr>
<td>Water viscosity</td>
<td>$\mu_w, 20^\circ$C</td>
<td>$1.0087 \times 10^{-3}$ kg m$^{-1}$ s$^{-1}$</td>
<td>Reynolds &amp; Richards, 1996</td>
</tr>
<tr>
<td>Water density</td>
<td>$\rho_w, 20^\circ$C</td>
<td>$998.2$ kg m$^{-3}$</td>
<td>Reynolds &amp; Richards, 1996</td>
</tr>
<tr>
<td>Diffusion coefficient of MCAA in water</td>
<td>$D_{w,MCAA}$</td>
<td>$1.12 \times 10^{-9}$ m$^2$ s$^{-1}$</td>
<td>Zhang et al, 2004</td>
</tr>
<tr>
<td>Diffusion coefficient of DCAA in water</td>
<td>$D_{w,DCAA}$</td>
<td>$1.02 \times 10^{-9}$ m$^2$ s$^{-1}$</td>
<td>Zhang et al, 2004</td>
</tr>
<tr>
<td>Diffusion coefficient of TCAA in water</td>
<td>$D_{w,TCAA}$</td>
<td>$9.75 \times 10^{-10}$ m$^2$ s$^{-1}$</td>
<td>Zhang et al, 2004</td>
</tr>
</tbody>
</table>

DCAA—dichloroacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

### TABLE 4  Parameter values used to simulate the fate of haloacetic acids in water distribution systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Range</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bacterial density on the pipe wall</td>
<td>$p$</td>
<td>$10-10^8$ cells/cm$^2$; $10^7$ cells/cm$^2$ for simulations in which other parameters were varied</td>
<td>Silhan et al, 2006; Lehtola et al, 2004; Chang et al, 2003; Ollos et al, 2003; Zhang et al, 2002; Niquette et al, 2000; Donlan &amp; Pipes, 1988; LeChevalier et al, 1987</td>
</tr>
<tr>
<td>Pipe diameter</td>
<td>$d$</td>
<td>2–36 in.; 6 in. for simulations in which other parameters were varied</td>
<td>McGhee, 1991; Rhoades, 1986</td>
</tr>
<tr>
<td>Water flow velocity</td>
<td>$u$</td>
<td>0.1–4 fps; 2 fps for simulations in which other parameters were varied</td>
<td>McGhee, 1991</td>
</tr>
<tr>
<td>Pipe distance</td>
<td>$x$</td>
<td>0–100 mi; 10 mi for simulations in which other parameters were varied</td>
<td>McGhee, 1991</td>
</tr>
</tbody>
</table>
FIGURE 4 Effect of HAA-degrader biomass density (A and B), filtration rate (C and D), and filter grain diameter (E and F) on the biodegradation rate constant $k_{rap}$, mass transfer rate constant $k_{mat}$, and the overall rate constant $k_{overall}$ for a biologically active filter.

DCAA—dichloroacetic acid, HAA—haloacetic acid, MCAA—monochloroacetic acid, TCAA—trichloroacetic acid

Simulations were performed using the kinetic parameters for Pennsylvania tap water enrichment cultures: (EPA/PAWS, PAWT).

For parts A and B, the filtration rate was 10 m/h, and the filter grain diameter was 0.75 mm. For parts C and D, the HAA-degrader biomass density was 0.1 μg protein/cm$^2$ and the filter grain diameter was 0.75 mm. For parts E and F, filtration rate was 10 m/h, and the HAA-degrader biomass density was 0.1 μg protein/cm$^2$. For all simulations, the bed porosity was 40%.
Effect of Zinc on the Transformation of HAAs in Drinking Water

Wei Wang and Lizhong Zhu

To next lecture