

	Table 4-1.	Mechanisms of Acid-Base Catalysis		
24	I. Specific H*	$S + HA \xrightarrow{k_1} SH^* + A^-$ $SH^* + H_2O \xrightarrow{k_3} P + H_3O^*$	Hate expression $P = k_1 k_2 [S][HA]/k_2 [A^-]$ $= (k_1 k_2 k_2 k_2) [S][H^+]$ where $k_a = [H^+][A^-]/[HA]$	For protolytic case, expression applies when k ₃ << k ₂ [A ⁻] whether initial H+ transfer is from Bronsted acid (HA) or H O+
Summary	II. General acid	$\begin{array}{c} S + HA \xrightarrow[k_2]{k_2} & SH^* + A^-\\ SH^* + H_2O & \stackrel{k_3}{\underset{\mathrm{fast}}{\overset{k_3}}{\overset{k_3}}{\overset{k_3}}{\overset{k_3}{\overset{k_3}{\overset{k_3}}{\overset{k_3}{\overset{k_3}{\overset{k_3}}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}{\overset{k_3}}{\overset{k_3}}{\overset{k_3}{\overset{k_3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$P = \{S\}\{\Sigmak_i[HA]\}$	Expression applies when $k_3 >> k_2[A^-]$; rate-controlling step is formation of intermediate SH+. F written for presence of several Bronstee acids in system.
	III. General acid	S + HA $\xrightarrow{k_1}$ SH ⁺ + A ⁻ SH ⁺ + A ⁻ $\xrightarrow{k_3}$ P + HA	$P = \frac{k_1k_3[S][HA]}{(k_2 + k_3)}$ or P = k'[S][HA]	Prototropic mecha- nism yields genera acid catalysis re- gardless of relative sizes of k ₂ and k ₃ .
	IV. Specific OH-	$HS + B \xrightarrow{k_1} S^- + BH^-$ $S^- + H_2O \xrightarrow{k_3}_{slow} P + OH^-$	$\begin{split} P &= k_1 k_3 [S^-] [B] / k_2 [BH^*] \\ &= (k_1 k_2 / k_2 K_8) [S^-] [OH^-] \end{split}$	For protolytic case expression applies when k ₃ << k ₂ [BH ⁺ regardless of natu of proton acceptor in first step.
	V. General base	HS + B $\begin{array}{c} k_1 \\ k_2 \end{array}$ S ⁻ + BH S ⁻ + H ₂ O $\begin{array}{c} k_3 \\ f_{ast} \end{array}$ P + OH ⁻	$\label{eq:product} \begin{split} P &= k[HS][B] \\ P &= [HS]\{\Sigmak[B]\} \end{split}$	Expression applie: when k ₃ >> k ₂ [BH ⁺ rate-controlling step is formation of S ; P written for presence of sever Bronsted bases.
	VI. General base	HS + B $\xrightarrow{k_1}$ S ⁻ + BH S ⁻ + BH ⁺ $\xrightarrow{k_3}$ P + B	$P = \frac{k_1 k_3 [S][HA]}{(k_2 + k_3)}$ or P = k'[S][HA]	Prototropic case yields general bas catalysis regard- less of relative sizes of k ₂ and k ₃ .

25			
	□ To next lecture		
		CEE697K Lecture #11	David A. Reckhow