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CEE 697K
ENVIRONMENTAL REACTION KINETICS

Lecture #11

Kinetic Theory: Encounter Model, Transition
State Model & lonic Strength Effects

David A. Reckhow Introduction

Structure of Water o 7

0 sp3 hybridization

- e . - 3
o 2 bonding and 2 non-bonding / T~ @/"'
orbitals /

o1 Dipolar Character
o Origin of Water’s Unusual
properties
o High melting and boiling point
o High heat of vaporization
o Expands upon freezing
o High surface tension
o Excellent polar solvent
B: Fig 1.2
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Woater’s intermolecular structure

01 Dominated by Hydrogen
Bonds

0 lce
Open tetrahedral structure

o Water
Flickering cluster model
m 100 ps lifetime
m 0.1 ps molecular vibration
Avg cluster size
® 65 molecules @ 0°C
® 12 molecules @ 100°C
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Clusters

Solutes in Water
=

o Great solvent for ionic or ionizable
substances
0 lon-dipole bonds improves stability

Energy increases with charge of ion anc
decreases with size

Solvent hole model

m As solute-water bonding strengthens ot 9 b |
comp'a.red to water-water bonding,” - ..l;B: Fia 1.4
solubility goes up <L ) 4

Hydrophilic solute ' i "o J \':‘
® Weak solute-water bonds reduce ! ’d):wl 41‘>k b
solubility j_\-ﬁ w‘(é/4 4
Hydrophobic solutes ) [ ? = h «ly
o+ . A 3 .
- Ty f-jv':?r——l‘-\ S oD
¥ 2. LA :
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Activation Energy
I

01 Activation Energy must always be positive
Unlike 2H, which may be positive or negative

-1 Differing reaction rates

Activated
Complex

Activated
Complex

Energy Energy

products

Reaction Coordinate Reaction Coordinate
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Encounter Theory |
e

o1 Uncharged Solutes

Nature of diffusion in water
® Encounter within a solvent cage

® Random diffusion occurs through elementary jumps of
distance Molecular /1 — 2r Molecular

diameter radius

Average time
2 between jumps ﬂ 2
For a continuous medium: D=4 5 or = i/
More T 2D
appropriate |:> For a semi-crystalline structure: D:17 P
67 or T="/6D

for water

For water, D ~ 1x10% cm2s!, and L = 4x108 cm, so T ~ 2.5x10"" s

If time between vibrations is ~ 1.5x107'3 s, then the average water molecule vibrates 150 times
(2.5x10°11/1.5x10°"3) in its solvent cage before jumping to the next one.

CEE697K Lecture #11 David A. Reckhow

10/24/2013



Encounter Theory I

Probability of Encounter
If A and B are the same size as water
They will have 12 nearest neighbors

Probability that “A” will encounter “B” in a solvent cage
of 12 neighbors is:

Proportional to the mole fraction of “B”

PB/A =6X B » With each new jump, “A’ has 6 new neighbors
Where: X, = Np e # molecules of “B” per cm?
g =
@mm===_# molecules of solvent per cm3
3
1Z)

Geometric packing factor Molecular volume (cm?)
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Encounter Theory I

And combining the rate of movement with the probability of
encountering “B”, we get an expression for the rate of

encounter with “B” %AB - l6 %2 JPA/B

Then substituting in for the probability

_ 6D(6nBy/13y
%AB 12

=36yin,D
For water, y=0.74, and the effective diffusion coefficient, D,; = D, +
Dg, and A=r,;, the sum of the molecular radii

}/ = 25rAB DasNs
@
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Then we get:

# of encounters/sec for each ‘

molecule of “A”
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Encounter Theory IV
o |
o1 Now the total # of encounters between “A” and “B” per cm®
per second is:
n
%AB =25r,; D gnaNg
0 In terms of moles of encounters (encounter frequency) this
becomes:
10004 (n, 1000 <*
2o =g )P e
=250 DAB[A]nB % ng=[B]/N,/1000
L/em? em cm;s_‘#/Mole} Ms!
Zops = 2.5x1072 I Das N [A][B]
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Encounter Theory V
10 ]
01 Frequency Factor
Z, s =2.5X10721, DABNO;A][B]
A
When E, = 0, k=A
Activated
Complex
_ AA-E./RT
Energy k — Ae
products
Reaction Coordinate
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0 Now the transition state is just one bond v
conversion to products

_ / Frequ:
vibrational -— Evib_ h v

Planks Law:

Transition State Theory |
1|
11 Consider the simple bimolecular reaction
A+B—>C
0 Even though it is an elementary reaction, we can break it down
info TWO SfepS A+ B @ AB¢ k* C
u g “Activated
Complex”
-1 Where the first “equilibrium” is: K- - [AB7]
. . [Al[B]
[AB‘]=K"[A][B] _
0 So the forward rate is: Ya
d[C sy
AL (A8 )= K TAIB] | Eneray| it
k
products
CEE697K Lecture #11
Reaction Coordinate
Transition State Theory I
[N

ibration away from

ency of vibration (s)

energy — Planck’s constant (6.62 x 107 ergs-s)

Bond energy must be in the thermal region:

BONd Ebondz kT -

KT/

So equating, we get:

hy =kT

Temperature (°K)

Boltzman constant (1.3807%X107 "¢ ergs °K"")

And since conversion occurs on the next vibration:

kT

k” =v and k=kiKi=TKi
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Transition State Theory llI

71 Now from basic thermodynamics:

AG°=-RTInK or K—g C/RT
And also AG°="H -T*S
So: K :e‘“%e_d%T

= And combining: k :k_TeAS%e‘AH%T
h

Recall: “E="H-P"V=~*H
0 And substituting back in:

k= (I%-eA%je_E%T

A
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Energy

Activation Energy

01 Activation Energy must always be positive
Unlike 2H, which may be positive or negative

01 Differing reaction rates

Activated
Complex

Activated
Complex

Energy

products b products

Reaction Coordinate Reaction Coordinate
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Temperature Effects

71 Arrhenius Equation
dink _E, k2 _(,-T)E,
= /RT? ~E,/RT =2 278
k, RTT,
- ~"‘ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ !
9 E,/2.3R RTT
Analogous to Van't Hoff
Equation for Equilibria
1/T
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lonic Strength Effects

o lon-ion Reactions

Based on activated complex theory

A+B < AB"—C e pag )= ke aE)

So let’s look at the equilibrium constant

K* = {AB"} _ [AB¢]7AB‘

or [AB*]= K‘[A][B][%J

{AH{B} [Al7.[Blrs Ve
Which means:
dt h .
K,° (for I=0)
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Reactions with charged ions

01 Using the Debye-Huckel Equation  -logy, =05521°°

m 1<0.005
logk, = logks + {— 0.51z2 —0.5122 +0.51(z, + 2, ) }I 05

_ o 0.5
=logk, +1.02z,7,1 22+22,2,+7%

1 Using the Guntelberg Approximation ossifi™
i 14108
= 1<0.01 e
IO.S

logk, =logk; +1.02z,z, m
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| corrections (cont.) *————
18| 04 .
71 Neutral species . 4 /m |
—logy, =l * Y

logk, =log kzo + {bA +by _bAB‘ }I ,“I:: 0 )
-1 Some case studies: -0z \_ .

o)
-0.4 =

0.6

0.4

Figure 3-13. Effect of ionic strength on rate constants: (i) BrCH,COO- + S,0,% (ii) 874 +
NO,; (iii) Hy0* + Ci,H5,0;, (inversion of sucrose); (iv) H;O* + Br-+ H,0,; (v)
OH- + Co(NH,)sBr? (ionic strength varied with NaBr [circles] and Na,SO|
[squares]); (vi) Fe(H,0)s2* + Co(C,0,),*. (From Weston, R. E., Jr. and H. A/
Schwarz, Chemical Kinetics, Prentice-Hall, Englewood Cliffs, NJ, 1972. With
CEE697K Lecture #11  pormission) 00T evid 3. Reckhow




Case Study: TCP
=

1 Observed loss of 1,1,1-
trichloropropanone in
distribution systems

Lab studies show that
chloroform is the product

Logically presumed to be
a simple hydrolysis

Reckhow & Singer, 1985

“Mechanisms of Organic Halide Formation During Fulvic
Acid Chlorination and Implications with Respect to
Preozonation”, In Jolley et al., Water Chlorination;
Chemistry, Environmental Impact and Health Effect, CEE697K
Volume 5, Lewis.

Note: both TCP and TCAC refer to the
1,1,1-trichloropropanone

030 TCAC +CHCly o4
o
025 ®
3
N TCAC
= 020 (
o
5
@ 0.5+
=
P
8
g oo+ °
o
(&)
CHCI
005 -
o 1 1 1 I 1 1
0 5 10 15 20 25 30
TIME, HOURS

Figure 6. Chlorination of 1,1,1-trichloroacetone (TCAC). Conditions: 20.4 mg/L applied

HOC, [PO,}; = 0.0145 M, pH 7.0, 20°C
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TCP (cont.)
=

1 lonic strength effects
Ink, =-4.81-1.41
logk,, =—2.08-0.6/1

o1 Rate with chlorine

CEE697

L 1 1 L 1 1 1 1 s
0 005 o0 0I5 0.20 025 030 035 040 045 050

VI
Figure 8. Pseudo first-order reaction rate constants for the hydrolysis of 1,1,1-trichloro-

acetone as a function of ionic strength. Conditions: pH 7.0, 20°C, no added chlo-
rine.

=70

005~
L]
Increases greatly o4l
High intercept Fares .
=]
£ -
- L}
k, =0.024+32[HOCI], & ooz
[o]o]) Hydrolysis in the Absence of Chlorine (k)
0 1 L L 1 1 1 1 ) IN—
0 5 10 15 20 25 30 35 40 45

CHLORINE CONCENTRATION,mg/|

Figure 9. Pseudo first-order reaction rate constants for the disappearance of 1,1,1-trichloro-
acetone as a function of chlerine dose. Conditions: pH 7.0, 20°C, [PO,}y = 0.0145
M.
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Disagreement with pri

020

or study

o Gurol & Suffet showed 10x |
higher rate constants

o1 Phosphate?

e
3
[<}
< 0l0 |
[
o
<= Doto of Gural et ol, 1983
C
005 10mg/1 Chiorine Dose
®= This Study
o
20+ | mg/l Chlorine Concentration
0 1 L 1 (|
0 002 004 006 008

olo
PHOSPHATE CONCENTRATION, M

Figure 7. Pseudo first-order reaction rate constants for the chiorination of 1,1,1-4richioro.
acetone as a function of phosphate concentration at pH 7.0.
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Putting it together .-

ey w9
5-C-CCl, ————= C=C-CCly
b o (P -
n k, (Chlorine )
k4 (OH™) k3(Chlorinel CI\ °
H-C-C-CCly
H
CHCIy;
FAST FAST
cl 0
CHCI, COOH A
2 H ;c -d-cel,

Cl
k, Ky (Chiorine) (P)y

= + k4 (Chiorine) + k, (OH)
77k, (P); + kg (Chlorine) 2 B

-1 -1
where k‘=l,25M hr

ky=32M' hr'
k, = 64,000M " hr

-7
k=16 X 107 Koy
Ky >10 Y kreae
¥
K (Enolate) (H )
TeACE
(Keto-enol)

Figure 12. Hypothetical mechanism for the decomposition of trichloroacetone to chloroform
in the presence of intermediate concentrations of phosphate at pH 7.
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Catalysis

o Homogeneous Catalysis

Definition

m Liquid-phase substances which react with the main reactants or
intermediates thereby providing an alternative pathway to products
with a lower activation energy or a higher frequency factor.
Catalysts are often regenerated over the course of the reaction.

2A%+B" 5> 2A"+B" termolecular reaction? — be skeptical
What A?+C" > A" +C™

2 2 . 3 “C” serves as a sort of charge-
really A“+C" 5> A" +C transfer facilitator, since “B” does
happens: C®4+B*—C* 4B not exist in a divalent state

2A% +B" -5 2A"+B*®
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Table 4-1. Mechanisms of Acid-Base Catalysis

Mechanism

Rate expression

Comments

3
S+ HAT== SH' + A

s
SH 4 HO = PaHO

o1 Summary Mo Serikss g

acid sy

ky
SH +H0 5 P+HO"

General S+HA = SHi4A
acid [
k3
SH*+A- — P+HA
Iv. [
Specific HS+B — & +BH*
OH- Ky
Ky
S+HO = P+OH
“ow
V. %
General HS + B —— S-+BH*
base ka
Ky
§+HO0 — P+OH
[
vi. M
General HS+B — S +BH"
base Ky

ks
S +BH — P+B

P = kK [SIHAVK[A]
= (R RykoKISIH)

where
K, = [HIATIHAL

P = [SKEk[HAL}

_ kky[SHA]
(kg +kq)

or
P = K[SIHA]

P

P = kK [SI[BIfk (BH]
= (kKIS TIOH ]

P = k[HS][B]
P = [HS){Ek[B]}

kk[S[HA]
Tk tha)

or
P = KISIHA]

P

For protolytic case,
expression applies
when k, << k;[A]]
whether initial H-
transfer is from
Bronsted acid (HA)
or H0*

Expression applies
when k, >k [A];
rate-controlling
step is formation of
intermediate SH*. P
written for presence
of several Bronsted
acids in system

Prototropic mecha-
nism yields general
acid calalysis re-
gardless of relative
sizes of k, and k.

For protalylic case,
expression applies
when k, << k,[BH']
regardless of nature
of proton acceptor
in first step.

Expression applies
when k, >> k,[BH'];
rate-controlling
step is formation of
S P written for
presence of several
Bronsted bases.

Prototropic case
yields general base
catalysis regard-
less of relative
sizes of k, and k,.

CEE69  Adapted from Laidler, K. J., Chemical Kinstics, McGraw-Hill, New Yark, 1965,
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O To next lecture
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