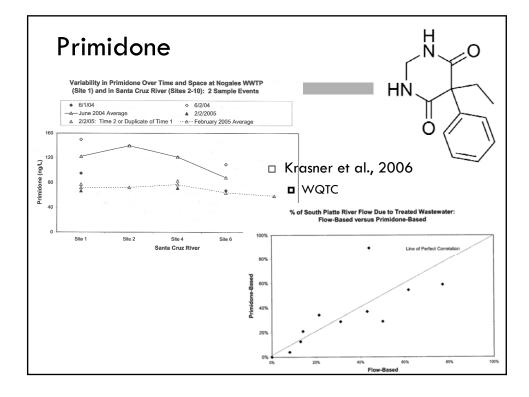
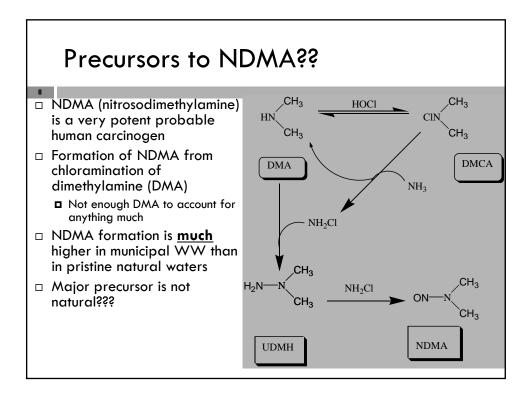


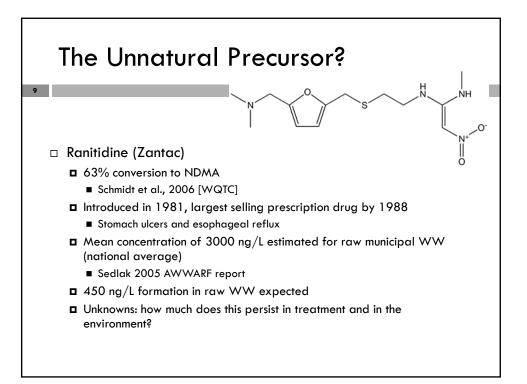
EDCs and PPCPs

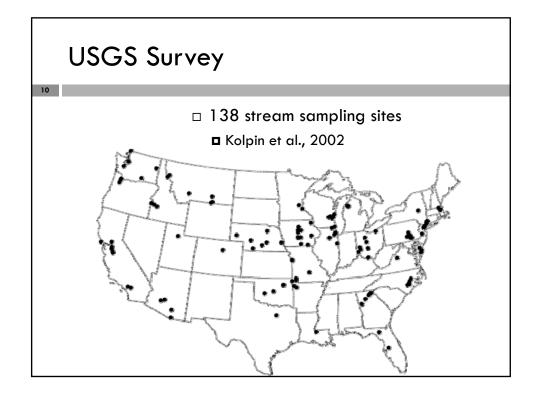

□ Why study these?

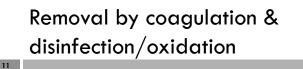
Direct impacts on human health

- Maybe not the most important?
- Public perception
 - Becoming a very sensitive issue
- Direct impacts on ecological health
 - Well documented: feminization of fish, etc.
- Tracers of wastewater contamination
- Indicators & promoters of antibiotic resistance
- Precursors to more Hazardous DBPs

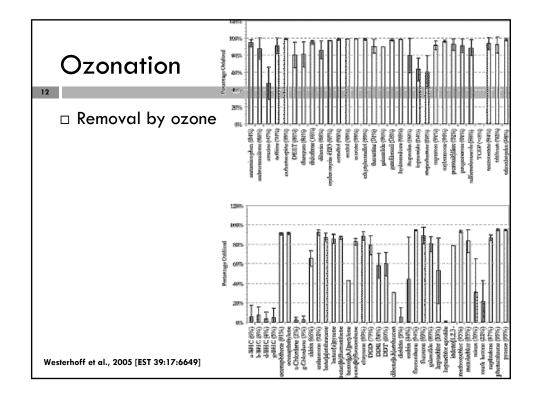


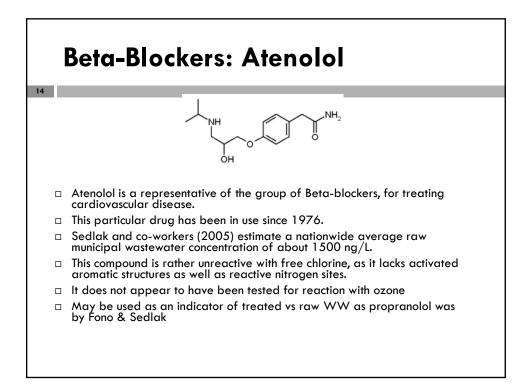


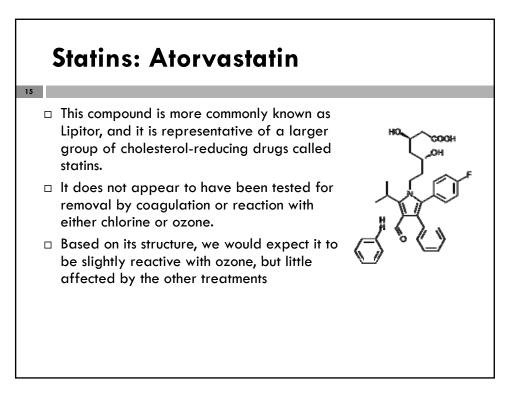


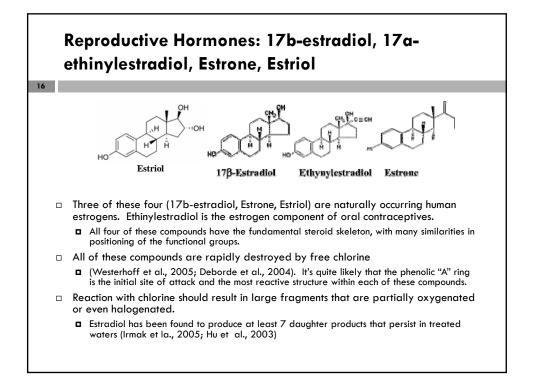


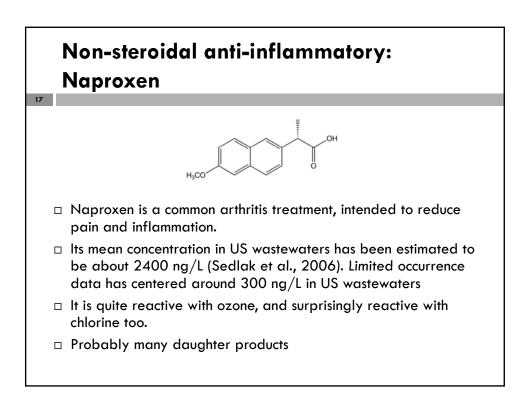
- One of the most critical human health challenges of the 21st century (WHO report)
 - >1,000,000 Americans infected each year
 - 14,000 deaths annually
- □ Cause: antibiotics are everywhere
 - Up to 95% of antibiotics in US are excreted in an unaltered state
 - Over prescription in humans
 - Heavy use in agriculture
- Result: Antibiotic resistant genes (ARGs) are ubiquitous in the aquatic environment
 - e.g., Pruden et al., 2006 [ES&T]

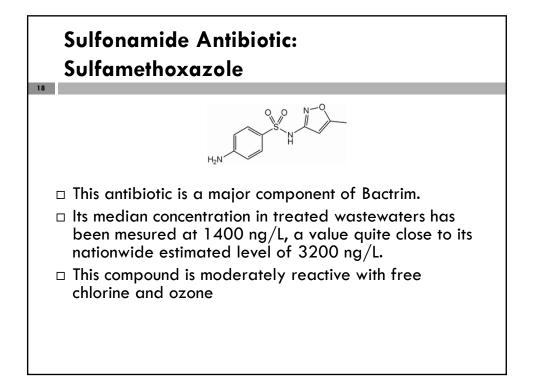


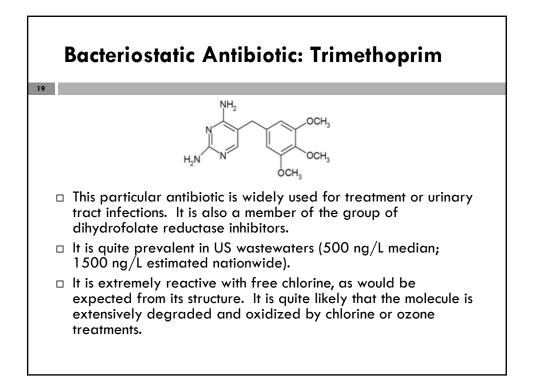


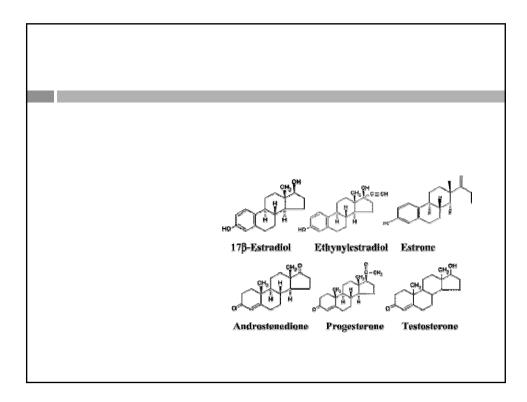


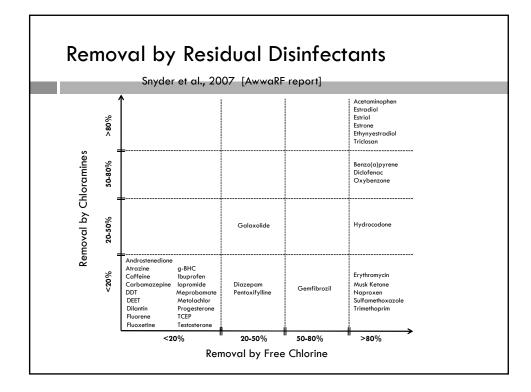

- □ Coagulation
 - Generally no
 - Nearly all EDCs and PPCPs are too small or too low in functional group density to be susceptible
- Oxidation/Disinfection
 - Yes to some
 - Chlorination: primary amines and activated aromatics (especially phenolics) and activated aliphatics
 - Ozonation: Many aromatics; aliphatics if hydroxyl radicals are formed
- □ Oxidation & Biofiltration
 - Almost nothing is known

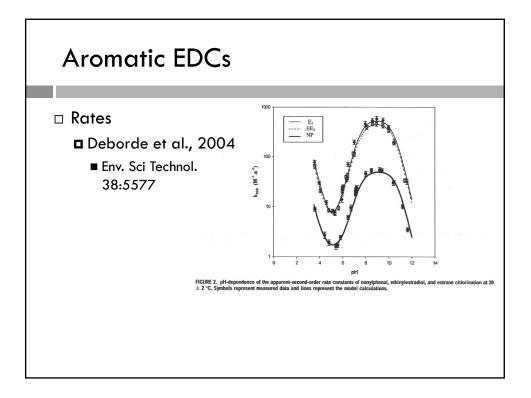


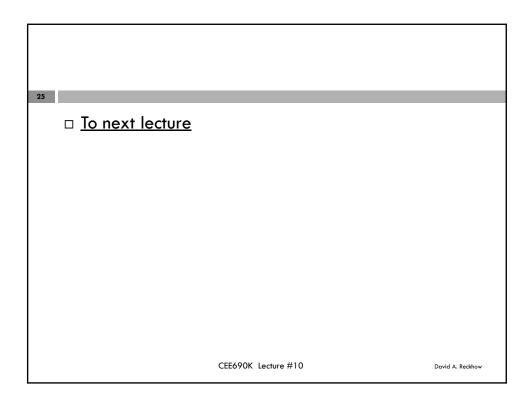

EDC	PhAC	WW associated
17β-estradiol	Atorvastatin or Gemfibrozil	Nitrosodimethylamine
Estriol	Naproxen	
Estrone	Sulfamethoxazole	
17α-ethinylestradiol	Trimethoprim	
Perchlorate	Atenolol	
	Ranitidine	
	Primidone?	











Rates								
Dialatan 9	Sa allarla Di							
Pinkston 8	« Sealak, 20	JU4						
	TADIE 2 Poto Constants fo	or the Deactin	on of Pharma	conticals and	Model Comp	winds with Chlo	rine	
	TABLE 2. Rate Constants fo	or the Reactio k_1 (M ⁻¹ s ⁻¹)	on of Pharma $\frac{k_2}{(M^{-1}s^{-1})}$	($M^{-1}s^{-1}$)	Model Compo ^{k_H (M⁻² s⁻¹)}	ounds with Chlo ^{Kmono} (M ⁻¹ s ⁻¹)	rine half-life (min), HOCI/OCI- *	half-life (min), monochloramine*
		(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	<i>k</i> 3	$(M^{-2} s^{-1})$	^{k_{mana} (M⁻¹s⁻¹)}	half-life (min), HOCI/OCI ^{- a}	monochloramine ^a
	acetaminophen atenolol	(M ⁻¹ s ⁻¹)	k ₂	k_3 (M ⁻¹ s ⁻¹) Pharmace 1.7 × 10 ⁻²	$k_{\rm H^-}$ (M ⁻² s ⁻¹) suticals 0.0×10^0	(M ⁻¹ s ⁻¹) <1.3 × 10 ⁻³ <3.0 × 10 ⁻²	half-life (min), HOCI/OCI ^{- a} 5.2×10^{0} 6.3×10^{3}	$\begin{array}{l} \text{monochloramine}^{s} \\ > 6.2 \times 10^{4} \\ > 2.7 \times 10^{3} \end{array}$
	acetaminophen atenoioi gemfibrozii indornetacine	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	k_3 (M ⁻¹ s ⁻¹) Pharmace 1.7×10^{-2} 7.3×10^{-1} 6.7×10^{1}	k_{H^-} (M ⁻² s ⁻¹) suticals 0.0 × 10 ⁰ 4.2 × 10 ⁶ 6.9 × 10 ⁷	k_{mono} (M ⁻¹ s ⁻¹) <1.3 × 10 ⁻³ <3.0 × 10 ⁻² <8.0 × 10 ⁻⁴ <1.5 × 10 ⁻²	$\begin{array}{c} \text{half-life (min),} \\ \text{HOCI/OCI}^{-a} \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \end{array}$	$\begin{array}{c} > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \end{array}$
	acetaminophen atenolol gemfibrozil	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	k_3 (M ⁻¹ s ⁻¹) Pharmace 1.7 × 10 ⁻² 7.3 × 10 ⁻¹ 6.7 × 10 ¹ 1.7 × 10 ⁻² 1.8 × 10 ⁻¹	k_{H^-} (M ⁻² s ⁻¹) suticals 0.0 × 10 ⁰ 4.2 × 10 ⁶ 6.9 × 10 ⁷ 1.1 × 10 ⁴ 1.3 × 10 ⁶	$\begin{array}{c} \textit{\textit{K}_{mano}} \\ (M^{-1}s^{-1}) \\ < 1.3 \times 10^{-3} \\ < 3.0 \times 10^{-2} \\ < 8.0 \times 10^{-4} \\ < 1.5 \times 10^{-2} \\ < 3.0 \times 10^{-2} \\ < 4.0 \times 10^{-4} \end{array}$	$\begin{array}{c} \text{half-life (min),}\\ \text{HOCI/OCI}^{-a} \\ \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \\ 5.9 \times 10^{3} \\ 3.4 \times 10^{2} \end{array}$	$\begin{array}{c} > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \end{array}$
	acetaminophen atenolol gemfibrozil Indornetacine metoprolol	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	k_3 (M ⁻¹ s ⁻¹) Pharmace 1.7 × 10 ⁻² 7.3 × 10 ⁻¹ 6.7 × 10 ¹ 1.7 × 10 ⁻²	k_{H^-} (M ⁻² s ⁻¹) suticals 0.0 × 10 ⁰ 4.2 × 10 ⁶ 6.9 × 10 ⁷ 1.1 × 10 ⁴	$\begin{array}{c} \textit{k}_{mano} \\ (M^{-1}s^{-1}) \\ < 1.3 \times 10^{-3} \\ < 3.0 \times 10^{-2} \\ < 8.0 \times 10^{-4} \\ < 1.5 \times 10^{-2} \\ < 3.0 \times 10^{-2} \end{array}$	$\begin{array}{c} \text{half-life (min),} \\ \text{HOCI/OCI}^{-a} \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \\ 5.9 \times 10^{3} \end{array}$	$\begin{array}{c} > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \end{array}$
	acataminophen atanoloi gemfibrozii Indonesatine metoproloi naproxen propranoloi	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	$\begin{array}{c} k_{3}\\ (M^{-1}s^{-1})\\ \hline\\ Pharmace\\ 1.7\times10^{-2}\\ 7.3\times10^{-1}\\ 1.7\times10^{-2}\\ 1.8\times10^{-1}\\ 2.4\times10^{0}\\ 7.5\times10^{0}\\ \hline\\ Model Cor\\ \hline\end{array}$	k_{H^+} (M ⁻² s ⁻¹) suticals 0.0 × 10 ⁰ 4.2 × 10 ⁶ 6.9 × 10 ⁷ 1.1 × 10 ⁴ 1.3 × 10 ⁶ 8.7 × 10 ⁸ 6.6 × 10 ⁶	$\begin{array}{c} k_{manne} \\ (M^{-1}s^{-1}) \end{array} \\ < 1.3 \times 10^{-3} \\ < 3.0 \times 10^{-2} \\ < 8.0 \times 10^{-4} \\ < 1.5 \times 10^{-2} \\ < 3.0 \times 10^{-2} \\ < 4.0 \times 10^{-4} \\ < 8.0 \times 10^{-4} \end{array}$	$\begin{array}{c} \text{half-life (min),}\\ \text{HOCI/OCI}^{-a} \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \\ 5.9 \times 10^{3} \\ 3.4 \times 10^{2} \\ 3.3 \times 10^{1} \end{array}$	$\begin{array}{c} \text{rescale} \\ > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \\ > 1.0 \times 10^5 \end{array}$
	acetaminophen atenolol gemfibrozil natoriaskine madolol naproxen propranolol anisole butyi phenyi ether	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	$\begin{array}{c} k_{3}\\ (M^{-1}s^{-1}) \end{array} \\ \label{eq:masses}$ Pharmace 1.7 \times 10^{-2} 7.3 \times 10^{-1} 6.7 \times 10^{1} 1.7 \times 10^{-2} 1.8 \times 10^{-1} 2.4 \times 10^{0} 7.5 \times 10^{0} \\ \mbox{Model Core 1.9 } \times 10^{-2} 2.5 \times 10^{-2} 2.5 \times 10^{-2} 1.5 \times 10^{-2} 1.5 \times 10^{-2} 1.5 \times 10^{-2} 1.5 \times 10^{	$\begin{array}{c} k_{41}-\\ (M^{-2} s^{-1})\\ \text{suticals}\\ 0.0 \times 10^{0}\\ 4.2 \times 10^{6}\\ 6.9 \times 10^{7}\\ 1.1 \times 10^{4}\\ 1.3 \times 10^{6}\\ 8.7 \times 10^{6}\\ 6.6 \times 10^{5}\\ \text{mpounds}\\ 1.9 \times 10^{4}\\ 8.2 \times 10^{4} \end{array}$	$\begin{array}{c} k_{manne} \\ (M^{-1}s^{-1}) \end{array} \\ < 1.3 \times 10^{-3} \\ < 3.0 \times 10^{-2} \\ < 8.0 \times 10^{-4} \\ < 1.5 \times 10^{-2} \\ < 3.0 \times 10^{-2} \\ < 4.0 \times 10^{-4} \\ < 8.0 \times 10^{-4} \end{array}$	$\begin{array}{c} \text{half-life (min),}\\ \text{HOCI/OCI}^{-a} \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \\ 5.9 \times 10^{3} \\ 3.4 \times 10^{2} \\ 3.3 \times 10^{1} \end{array}$	$\begin{array}{c} \text{rescale} \\ > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \\ > 1.0 \times 10^5 \end{array}$
	acetaminophen atenolol gemfibrozil indurnasúne maproxen propranolol anisole budy phenyl ether 1-methoxynaphthalene 3-methylanisole	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	$\begin{array}{c} k_{5}\\ (M^{-1}s^{-1}) \end{array} \\ \label{eq:masses}$ Pharmace $\begin{array}{c} 1.7 \times 10^{-2}\\ 7.3 \times 10^{-1}\\ 1.7 \times 10^{-2}\\ 1.8 \times 10^{-1}\\ 2.4 \times 10^{0}\\ 7.5 \times 10^{0} \end{array} \\ \begin{array}{c} Model \ Common \\ 1.9 \times 10^{-2}\\ 2.5 \times 10^{-2}\\ 3.5 \times 10^{-1}\\ 3.3 \times 10^{-1} \end{array}$	k_{H^-} (M ⁻² s ⁻¹) suticals 0.0 × 10 ⁰ 4.2 × 10 ⁶ 6.9 × 10 ⁷ 1.1 × 10 ⁴ 1.3 × 10 ⁶ 6.6 × 10 ⁶ mpounds 1.9 × 10 ⁴ 8.2 × 10 ⁴ 2.4 × 10 ⁷ 2.4 × 10 ⁶	$\begin{array}{c} k_{manne} \\ (M^{-1}s^{-1}) \end{array} \\ < 1.3 \times 10^{-3} \\ < 3.0 \times 10^{-2} \\ < 8.0 \times 10^{-4} \\ < 1.5 \times 10^{-2} \\ < 3.0 \times 10^{-2} \\ < 4.0 \times 10^{-4} \\ < 8.0 \times 10^{-4} \end{array}$	$\begin{array}{c} \text{half-life (min),}\\ \text{HOCI/OCI}^{-a} \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \\ 5.9 \times 10^{3} \\ 3.4 \times 10^{2} \\ 3.3 \times 10^{1} \end{array}$	$\begin{array}{c} \text{rescale} \\ > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \\ > 1.0 \times 10^5 \end{array}$
	acceloninghen atcroids profibrozil motorretacine motoproloi naproxen programoloi anisolo busyl phonyl ether 1-methoxymaphthalmer	(M ⁻¹ s ⁻¹)	(M ⁻¹ s ⁻¹)	$\begin{array}{c} k_{3}\\ (M^{-1}s^{-1}) \end{array} \\ \label{eq:masses}$ Pharmace 1.7 \times 10 ⁻² 7.3 \times 10 ⁻¹ 6.7 \times 10 ³ 1.7 \times 10 ⁻² 1.8 \times 10 ⁻¹ 2.4 \times 10 ⁰ 7.5 \times 10 ⁹ Model Cor 1.9 \times 10 ⁻² 2.5 \times 10 ⁻² 3.5 \times 10 ⁻¹	k_{H^-} (M ⁻² s ⁻¹) suticals 0.0 × 10 ⁰ 4.2 × 10 ⁶ 6.9 × 10 ⁷ 1.1 × 10 ⁴ 1.3 × 10 ⁶ 6.6 × 10 ⁵ 8.7 × 10 ⁶ 6.6 × 10 ⁵ 1.9 × 10 ⁴ 8.2 × 10 ⁶ 2.4 × 10 ⁷ 1.2 × 10 ⁶	$\begin{array}{c} k_{manne} \\ (M^{-1}s^{-1}) \end{array} \\ < 1.3 \times 10^{-3} \\ < 3.0 \times 10^{-2} \\ < 8.0 \times 10^{-4} \\ < 1.5 \times 10^{-2} \\ < 3.0 \times 10^{-2} \\ < 4.0 \times 10^{-4} \\ < 8.0 \times 10^{-4} \end{array}$	$\begin{array}{c} \text{half-life (min),}\\ \text{HOCI/OCI}^{-a} \\ \hline 5.2 \times 10^{0} \\ 6.3 \times 10^{3} \\ 9.3 \times 10^{1} \\ 1.4 \times 10^{0} \\ 5.9 \times 10^{3} \\ 3.4 \times 10^{2} \\ 3.3 \times 10^{1} \end{array}$	$\begin{array}{c} \text{rescale} \\ > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \\ > 1.0 \times 10^5 \end{array}$
	acetaminophen atenoid gradunsacine metoproiol naproxen propranoiol anisole butyi phonyi other butyi phonyi other 3-methylanisole 4-methylanisole	k₁ (M ⁻¹ s ⁻¹) 3.1 × 10 ⁰	^k 2 (M ^{−1} s ^{−1}) 7.0 × 10 ³	$\begin{array}{c} k_{3}\\ (M^{-1}s^{-1}) \end{array} \\ \hline \\ Pharmace \\ 1.7 \times 10^{-2} \\ 7.3 \times 10^{-1} \\ 1.7 \times 10^{-2} \\ 1.8 \times 10^{-1} \\ 1.8 \times 10^{-1} \\ 1.8 \times 10^{-1} \\ 1.8 \times 10^{-2} \\ 2.5 \times 10^{-2} \\ 2.5 \times 10^{-2} \\ 3.5 \times 10^{-1} \\ 3.5 \times 10^{-1} \\ 3.2 \times 10^{-2} \\ 1.4 \times 10^{-2} \end{array}$	$\begin{array}{c} k_{H^-} \\ (M^{-2} s^{-3}) \\ \text{suticals} \\ \hline 0.0 \times 10^0 \\ 4.2 \times 10^6 \\ 6.9 \times 10^7 \\ 1.1 \times 10^6 \\ 8.7 \times 10^6 \\ 6.6 \times 10^6 \\ 1.3 \times 10^6 \\ 6.6 \times 10^6 \\ 1.9 \times 10^4 \\ 8.2 \times 10^4 \\ 8.2 \times 10^4 \\ 8.2 \times 10^4 \\ 2.4 \times 10^7 \\ 1.2 \times 10^6 \\ 4.7 \times 10^4 \\ 2.5 \times 10^4 \end{array}$	Konno (M ⁻¹ 5 ⁻¹) <1.3 × 10 ⁻³ <3.0 × 10 ⁻² <8.0 × 10 ⁻⁴ <1.5 × 10 ⁻² <3.0 × 10 ⁻² <4.0 × 10 ⁻⁴ <8.0 × 10 ⁻²	$\begin{array}{c} \mbox{half-life (min),} \\ \mbox{HOCUOCL}^{-s} \\ \mbox{5.2} \times 10^{0} \\ \mbox{6.3} \times 10^{3} \\ \mbox{9.3} \times 10^{1} \\ \mbox{1.4} \times 10^{0} \\ \mbox{5.9} \times 10^{3} \\ \mbox{3.4} \times 10^{2} \\ \mbox{1.3} \times 10^{1} \end{array}$	$\begin{array}{c} \text{rescale} \\ > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \\ > 1.0 \times 10^5 \end{array}$
	acetaminophen atenolol gemfibrozil indurnasúne mstoprolol maproxen propranolol anisole budy phonyl ether 1-methoxynaphthalene 3-methylamisole 4-methylamisole	k₁ (M ⁻¹ s ⁻¹) 3.1 × 10 ⁰	^k 2 (M ^{−1} s ^{−1}) 7.0 × 10 ³	$\begin{array}{c} k_{3}\\ (M^{-1}s^{-1}) \end{array} \\ \hline \\ Pharmace \\ 1.7 \times 10^{-2} \\ 7.3 \times 10^{-1} \\ 1.7 \times 10^{-2} \\ 1.8 \times 10^{-1} \\ 1.8 \times 10^{-1} \\ 1.8 \times 10^{-1} \\ 1.8 \times 10^{-2} \\ 2.5 \times 10^{-2} \\ 2.5 \times 10^{-2} \\ 3.5 \times 10^{-1} \\ 3.5 \times 10^{-1} \\ 3.2 \times 10^{-2} \\ 1.4 \times 10^{-2} \end{array}$	$\begin{array}{c} k_{H^-} \\ (M^{-2} s^{-3}) \\ \text{suticals} \\ \hline 0.0 \times 10^0 \\ 4.2 \times 10^6 \\ 6.9 \times 10^7 \\ 1.1 \times 10^6 \\ 8.7 \times 10^6 \\ 6.6 \times 10^6 \\ 1.3 \times 10^6 \\ 6.6 \times 10^6 \\ 1.9 \times 10^4 \\ 8.2 \times 10^4 \\ 8.2 \times 10^4 \\ 8.2 \times 10^4 \\ 2.4 \times 10^7 \\ 1.2 \times 10^6 \\ 4.7 \times 10^4 \\ 2.5 \times 10^4 \end{array}$	Konno (M ⁻¹ 5 ⁻¹) <1.3 × 10 ⁻³ <3.0 × 10 ⁻² <8.0 × 10 ⁻⁴ <1.5 × 10 ⁻² <3.0 × 10 ⁻² <4.0 × 10 ⁻⁴ <8.0 × 10 ⁻²	$\begin{array}{c} \mbox{half-life (min),} \\ \mbox{HOCUOCL}^{-s} \\ \mbox{5.2} \times 10^{0} \\ \mbox{6.3} \times 10^{3} \\ \mbox{9.3} \times 10^{1} \\ \mbox{1.4} \times 10^{0} \\ \mbox{5.9} \times 10^{3} \\ \mbox{3.4} \times 10^{2} \\ \mbox{1.3} \times 10^{1} \end{array}$	$\begin{array}{c} \text{rescale} \\ > 6.2 \times 10^4 \\ > 2.7 \times 10^3 \\ > 1.0 \times 10^5 \\ > 5.4 \times 10^3 \\ > 2.7 \times 10^3 \\ > 2.0 \times 10^5 \\ > 1.0 \times 10^5 \end{array}$

Alomai		s (cont	•)				
Rates							
Deborde	e et al., 200	4					
TABLE 2. Second-Order Rate	Constants Calculated for	the ED Chlorination Mecha	mism (20 \pm 2 °C, 3.5 $-$ 12.0) pH Rang	e)		
compounds	<i>K</i> ₁ (±σ) (M ^{−1} s ^{−1})	k ₁ (±o) (M ⁻² s ⁻¹)	$k_2 (\pm \sigma) (M^{-1} s^{-1})$	$k_{3}(\pm \sigma)$ (M ⁻¹ s ⁻¹)		
4-n-nonylphenol 17α-ethinylestradiol	3.02 (0.34) ×10 ⁷ 2.04 (0.16) × 10 ⁸	$3.02 (0.34) \times 10^4$ $2.04 (0.16) \times 10^5$	1.31 (0.13) 4.33 (0.53)	7.5 (0.27 3.52 (0.1			
β -estradiol	$2.24(0.17) \times 10^{8}$	2.24 (0.17) × 105	3.78 (0.42)	3.64 (0.1	1) $\times 10^{5}$		
estrone estriol	2.62 (0.18) × 10 ⁸ 1.82 (0.15) × 10 ⁸	2.62 (0.18) × 10 ⁵ 1.82 (0.15) × 10 ⁵	3.74 (0.57) 4.82 (0.50)	4.15 (0.1 3.56 (0.1			
EDC + HOCl -	\mathbf{H}^+ k_1	products	TABLE 3. Apparent-Sec	cond Order	Pate Can	stants on	1 10-11 1:
LDC + HOCi	$+ 11 \longrightarrow$	producis	Times Calculated at p Ranging from 0.1 to 1	H 7, 20 °C	for Total	Chlorine E	oses
EDC + HO	$Cl \xrightarrow{k_2} nr$	oducts				112 (min)	
			compounds	(М ⁻¹ s ⁻¹)	chlorine concn 0.1 mg/L	chlorine concn 0.5 mg/L	chlorir concr 1 mg/
$EDC^{-} + HOC$	$l \xrightarrow{k_3} pro$	oducts	4- <i>n</i> -nonylphenol 17α-ethinylestradiol	12.6 112.1	651 73.2	130 14.6	65.1 7.3
000	· pro		β-estradiol	115.2	71.2	14.2	7.1
			estriol	113.6	72.2	14.4	7.2

