Print version

CEE 690K ENVIRONMENTAL REACTION KINETICS

Lecture #9

<u>Reaction Mechanisms</u>: Acid Catalysis Brezonik, Chapter 4

David A. Reckhow Introduction

Mechanisms: Haloform Reaction

$R - C - CH_{3} \xrightarrow{OH^{-}} \left[R - C - CH_{2}^{O} \xrightarrow{OO} R - C = CH_{2}^{O} \right]$
(HOX $\frac{H^*}{fast}H_2OX^*$) fast
$\begin{bmatrix} C_{\parallel}^{0} & O_{\parallel}^{0} \\ R - C - CHX^{0} \leftrightarrow R - C = CHX \end{bmatrix} \xrightarrow{OH^{-}}_{slow} R - C - CH_{2}X$
fast $(HOX \xrightarrow{H^+}{fast} H_2OX^+)$
$R - C - CHX_{2} \xrightarrow{OH} \left[R - C - CX_{2}^{\bigcirc} + R - C = CX_{2} \right]$
(HOX $\frac{H^{+}}{fast}H_2OX^{+}$) fast
$CHX_3 + R - C - OH \leftarrow OH^- H_2O + R - C - CX_3$

2

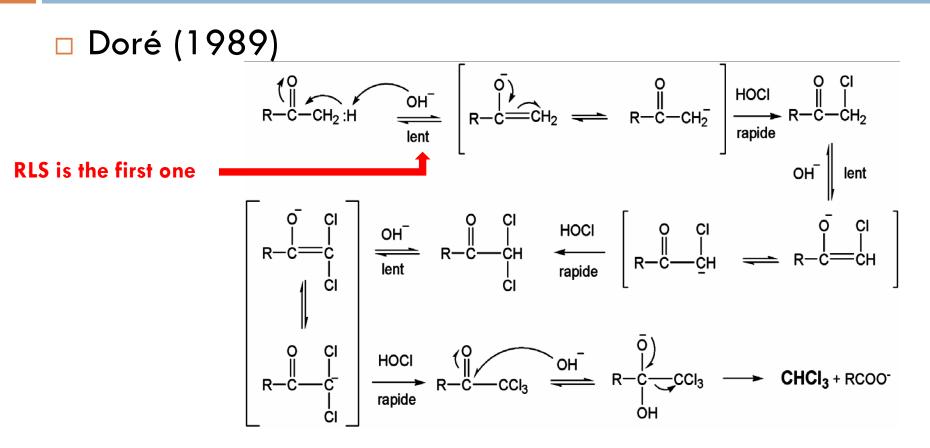
Chlorine + acetone 🔳 🗖 Morris & Baum, 1978 Brezonik, 1994 Pg 240-241 CH,-Halogenation $H_{2}O +$ Сн, -С-Сн, с1 + Он-HOCI Halogenation + $\overset{\circ}{\mathbb{D}}$ $\overset{OH^-}{\longrightarrow}$ $\overset{OH^-}{\longrightarrow}$ $\overset{OH^-}{\longrightarrow}$ $\overset{OH^-}{\longrightarrow}$ $OH^- +$ + H₂O CH3-CC12 CH₃-C-CCl₃ <mark>≪</mark> OH-- HOCI Hydrolysis + CHCl. Halogenation + OH-

Figure 4-25. Reaction scheme for production of chloroform from acetone by the classic haloform reaction.

:690K Lecture #09

Haloform reaction: initial step

3

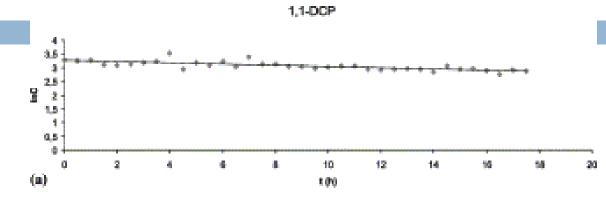

Three potential pathways to enolate

- Reaction with water (K_O), hydroxide (K_{OH}), and proton (K_H) ■ $k_f = K_O + K_{OH}[OH^-] + K_H[H^+]$
 - For acetone, the OH pathway dominates above pH 5.5

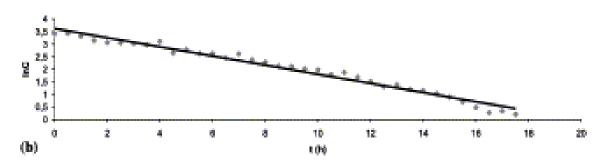
Substance	pKa	Ko sec ⁻¹	K _{OH} 1/mol, sec	K _H 1/mol, sec	t ₅₀ pH 7, hr	t ₅₀ , pH 8.3 hr
Acetone	20	4.7 x 10 ⁻¹⁰	0.25	2.9×10^{-5}	7500	385
Chloroacetone	16.5	5.3 x 10 ⁻⁸	93	6.3 x 10 ⁻⁵	21	1.0
as-Dichloroacetone	15	7.3 x 10 ⁻⁶	450	1.1 x 10 ⁻⁵	3.7	0.21
Pyruvic acid ⁶		4.5×10^{-7}			5.7	0.21
Ethyl pyruvate ⁶	16	4.7×10^{-7}				
Acetylacetone	9.0	1.1×10^{-2}		k_{f}	$[H^+]$	4-1
Ethyl acetoacetate	10.7	1.2×10^{-3}		$K_a = \frac{J}{I}$	$=$ $\frac{1}{1}$	What is
Malonic acid		1.7 x 10 ⁻¹		K_r	[HA	

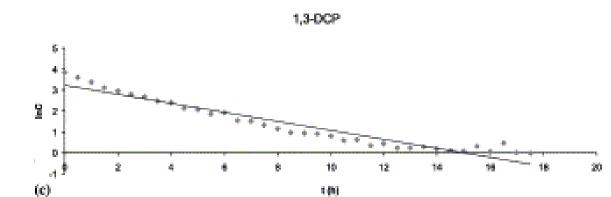
Haloform: Doré's diagram

4

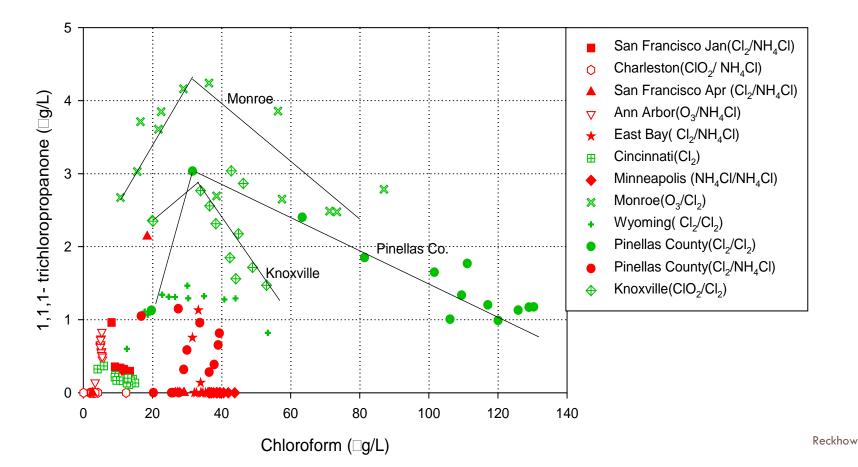


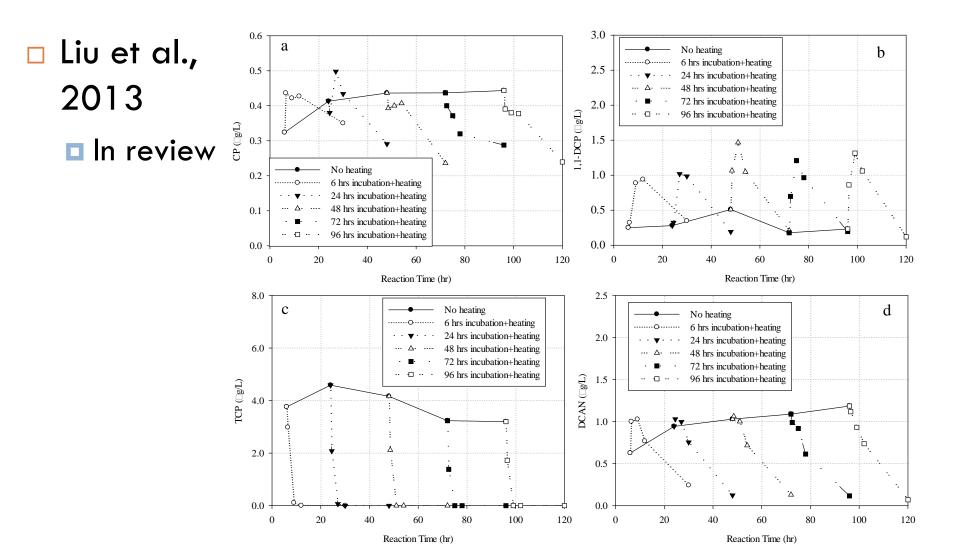
Loss of intermediates in lab water


21C, ultrapure water


5

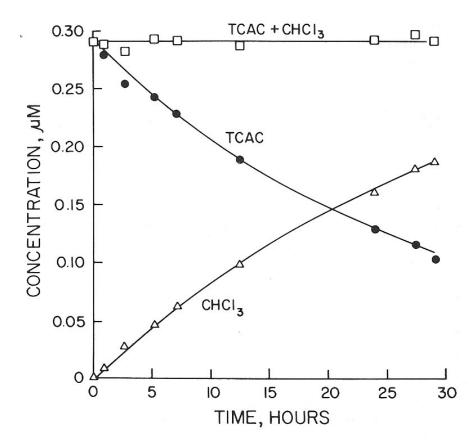
 (Nikolaou et al., 2001)


1,1,1-TCP


Profile of TCP in water systems

- 6
- 1,1,1-Trichloropropanone concentrations compared to the corresponding TTHM concentration for all samples

Loss in water heaters


7

Case Study: TCP

Note: both TCP and TCAC refer to the 1,1,1-trichloropropanone

- Observed loss of 1,1,1trichloropropanone in distribution systems
 - Lab studies show that chloroform is the product
 - Logically presumed to be a simple hydrolysis

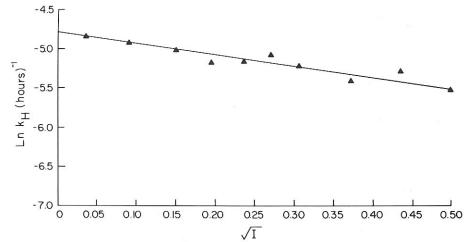
Figure 6. Chlorination of 1,1,1-trichloroacetone (TCAC). Conditions: 20.4 mg/L applied HOCI, $[PO_4]_T = 0.0145 M$, pH 7.0, 20°C.

CEE690K Lecture #09

8

Reckhow & Singer, 1985

"Mechanisms of Organic Halide Formation During Fulvic Acid Chlorination and Implications with Respect to Preozonation", In Jolley et al., Water Chlorination; Chemistry, Environmental Impact and Health Effect, Volume 5, Lewis.


TCP (cont.)

9

lonic strength effects

- $\ln k_{H} = -4.81 1.4\sqrt{I}$ $\log k_{H} = -2.08 - 0.6\sqrt{I}$
- Rate with chlorine
 - Increases greatly
 - High intercept

 $k_T = 0.024 + 32 [HOCl]_T$

Pseudo first-order reaction rate constants for the hydrolysis of 1,1,1-trichloro-Figure 8. acetone as a function of ionic strength. Conditions: pH 7.0, 20°C, no added chlorine.

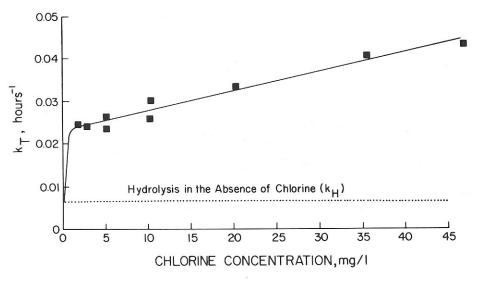


Figure 9. Pseudo first-order reaction rate constants for the disappearance of 1,1,1-trichloroacetone as a function of chlorine dose. Conditions: pH 7.0, 20°C, $[PO_{a}]_{T} = 0.0145$ Μ.

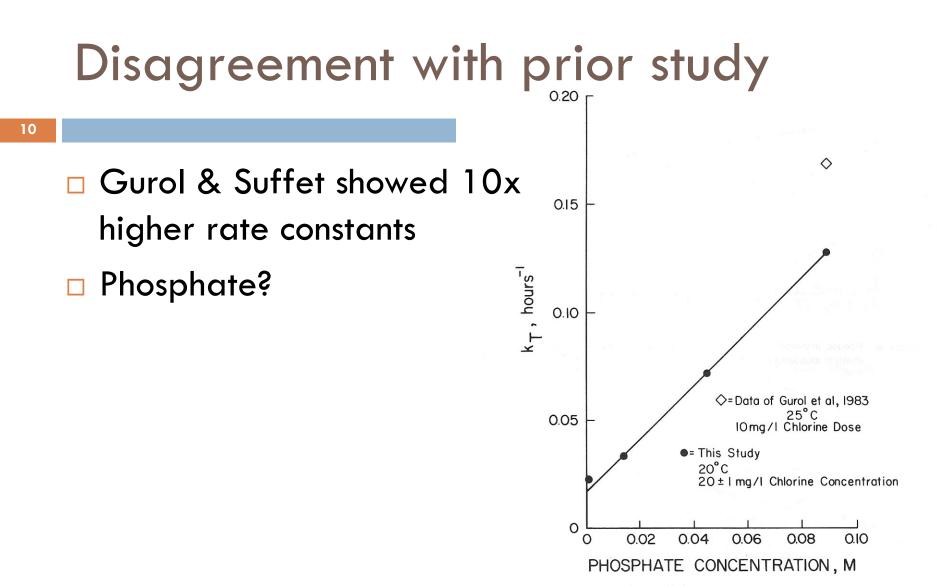
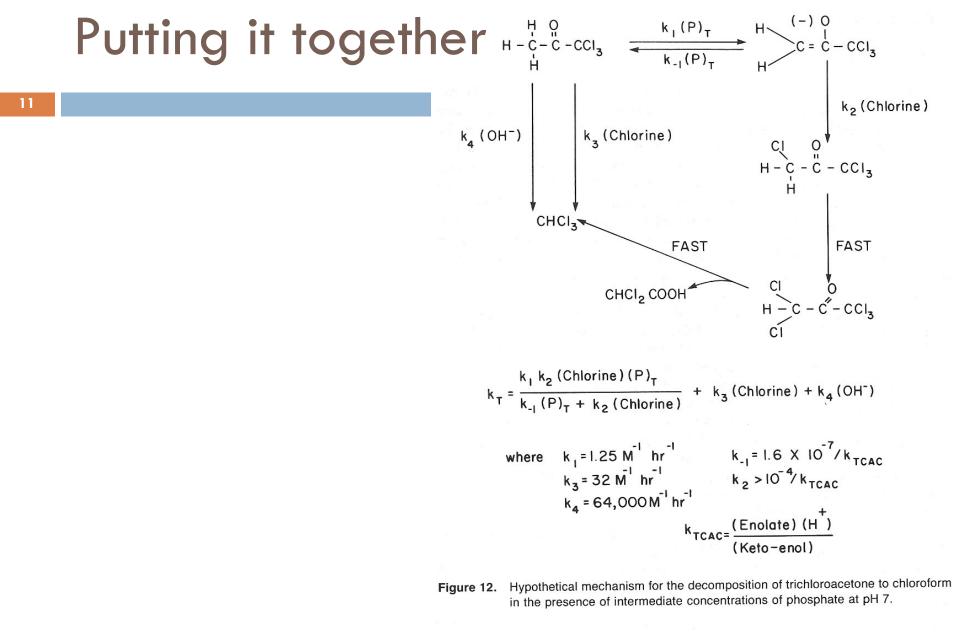



Figure 7. Pseudo first-order reaction rate constants for the chlorination of 1,1,1-trichloroacetone as a function of phosphate concentration at pH 7.0.

CEE690K Lecture #09

Catalysis

Homogeneous Catalysis

- Definition
 - Liquid-phase substances which react with the main reactants or intermediates thereby providing an alternative pathway to products with a lower activation energy or a higher frequency factor. Catalysts are often regenerated over the course of the reaction.

 $2A^{+2} + B^+ \rightarrow 2A^+ + B^{+3}$ termolecular reaction? – be skeptical

What

$$A^{+2} + C^+ \to A^+ + C^{+2}$$

really

happens:

$$A^{+2} + C^+ \rightarrow A^+ + C^{+2}$$

$$A^{+2} + C^{+2} \rightarrow A^+ + C^{+3}$$

$$C^{+3} + B^+ \rightarrow C^+ + B^{+3}$$

 $2A^{+2} + B^+ \rightarrow 2A^+ + B^{+3}$

"C" serves as a sort of chargetransfer facilitator, since "B" does not exist in a divalent state

Summary

Туре	Mechanism	Rate expression	Comments
I. Specific H⁺	S + HA $\xrightarrow{k_1}$ SH ⁺ + A ⁻ SH ⁺ + H ₂ O $\xrightarrow{k_3}$ P + H ₃ O ⁺	$P = k_1 k_3 [S][HA]/k_2[A^-]$ = (k_1 k_3/k_2 K_a)[S][H^+] where K_a = [H^+][A^-]/[HA]	For protolytic case, expression applies when $k_3 \ll k_2[A^-]$ whether initial H ⁺ transfer is from Bronsted acid (HA) or H ₃ O ⁺ .
II. General acid	S + HA $\xrightarrow{k_1}$ SH ⁺ + A ⁻ SH ⁺ + H ₂ O $\xrightarrow{k_3}_{\text{fast}}$ P + H ₃ O ⁺	P = [S]{∑k,[HA],}	Expression applies when $k_3 \gg k_2[A^-]$; rate-controlling step is formation of intermediate SH ⁺ . P written for presence of several Bronsted acids in system.
III. General acid	S + HA $\xrightarrow{k_1}$ SH ⁺ + A ⁻ SH ⁺ + A ⁻ $\xrightarrow{k_3}$ P + HA	$P = \frac{k_1 k_3 [S][HA]}{(k_2 + k_3)}$ or P = k'[S][HA]	Prototropic mecha- nism yields general acid catalysis re- gardless of relative sizes of k ₂ and k ₃ .
IV. Specific OH-	$HS + B \xrightarrow{k_1} S^- + BH^+$ $S^- + H_2O \xrightarrow{k_3} P + OH^-$	$P = k_1 k_3 [S^-][B]/k_2 [BH^*]$ = $(k_1 k_3 / k_2 K_B) [S^-][OH^-]$	For protolytic case, expression applies when k ₃ << k ₂ [BH+] regardless of nature of proton acceptor in first step.
V. General base	$HS + B \xrightarrow[k_2]{k_2} S^- + BH^+$ $S^- + H_2O \xrightarrow[fast]{k_3} P + OH^-$	P = k[HS][B] P = [HS]{∑k _i [B _i]}	Expression applies when $k_3 \gg k_2[BH^*]$ rate-controlling step is formation of S ⁻ ; P written for presence of severa Bronsted bases.
VI. General base	HS + B $\xrightarrow{k_1}$ S ⁻ + BH ⁺ S ⁻ + BH ⁺ $\xrightarrow{k_3}$ P + B		Prototropic case yields general basi catalysis regard- less of relative sizes of k ₂ and k ₃ .

CEE69

□ <u>To next lecture</u>