

HBr Formation II

$$\frac{d[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$$

- □ But radical species (H & Br) are really intermediates
 - They are not easily measured, and they are not the starting materials
 - They are also extremely reactive and never build up to any appreciable concentration
 - Thus we can make the quasi-steady state (QSS) assumption:

$$0 \approx \frac{d[Br]}{dt} = 2k_1[Br_2] + k_3[HBr][H] + k_4[Br_2][H] - k_2[H_2][Br] - 2k_5[Br]^2$$

$$0 \approx \frac{d[H]}{dt} = k_2[H_2][Br] - k_3[HBr][H] - k_4[Br_2][H]$$

Now we combine the two QSS equations with the HBr formation rate expression

CEE690K Lecture #7

HBr Formation
$$\coprod \frac{d[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$$

□ Solve the H-QSS for [H]
$$[H] = \frac{k_2[H_2][Br]}{k_3[HBr] + k_4[Br_2]}$$
 \longleftarrow

$$[H] = \frac{k_2[H_2][Br]}{k_2[HBr] + k_2[Br]}$$

$$2k_5[Br]^2 = 2k_1[Br_2] + (k_3[HBr] + k_4[Br_2])[H] - k_2[H_2][Br]$$

$$2k_{5}[Br]^{2} = 2k_{1}[Br_{2}] + \left(k_{3}[HBr] + k_{4}[Br_{2}]\right) \frac{k_{2}[H_{2}][Br]}{k_{3}[HBr] + k_{4}[Br_{2}]} - k_{2}[H_{2}][Br]$$

$$2k_{5}[Br]^{2} = 2k_{1}[Br_{2}] + k_{2}[H_{2}][Br] - k_{2}[H_{2}][Br]$$

$$2k_5[Br]^2 = 2k_1[Br_2]$$

$$[Br] = \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \qquad k_1/k_5 = K$$
 for: $Br_2 \leftrightarrow 2Br$

CEE690K Lecture #7

HBr Formation IV

$$\frac{d[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$$

Substituting this back into the equation for [H] gives us expressions without intermediates

$$[H] = \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]} \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \qquad \text{and} \qquad [Br] = \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

□ Now we can substitute back into the original HBr expression

$$\frac{d[HBr]}{dt} = k_2[H_2] \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} + \left(k_4[Br_2] - k_3[HBr]\right) \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]} \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

And simplify

$$\frac{d[HBr]}{dt} = \left(k_2[H_2] + \left(k_4[Br_2] - k_3[HBr]\right) \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]} \right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

CEE690K Lecture #7

HBr Formation V
$$\frac{d[HBr]}{dt} = \left(k_2[H_2] + \left(k_4[Br_2] - k_3[HBr]\right) \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

$$\begin{split} & \qquad \qquad \text{Further simplifying} \\ & \qquad \frac{d[HBr]}{dt} = \left(k_2[H_2] + \frac{k_2[H_2]k_4[Br_2] - k_2[H_2]k_3[HBr]}{k_3[HBr] + k_4[Br_2]}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \\ & \qquad \qquad \frac{d[HBr]}{dt} = \left(k_2[H_2] + \frac{k_2[H_2] - k_2[H_2]\frac{k_3[HBr]}{k_4[Br_2]}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \\ & \qquad \qquad \frac{d[HBr]}{dt} = \left(\frac{k_2[H_2] + k_2[H_2]\frac{k_3[HBr]}{k_4[Br_2]}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}} + \frac{k_2[H_2] - k_2[H_2]\frac{k_3[HBr]}{k_4[Br_2]}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \end{split}$$

$$\frac{d[HBr]}{dt} = \left(\frac{2k_2[H_2]}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \qquad \boxed{\frac{d[HBr]}{dt} = \left(\frac{2k_2 \frac{k_1}{k_2}[H_2][Br_2]^{0.5}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right)}$$

$$\frac{d[HBr]}{dt} = \left(\frac{2k_2 \frac{k_1}{k_2} [H_2] [Br_2]^{0.5}}{1 + \frac{k_3 [HBr]}{k_4 [Br_2]}}\right)$$

$$\frac{d[HBr]}{dt} = \frac{k[H_2][Br_2]^{0.5}}{1 + k'^{[HBr]}/_{Br_2}}$$

HBr Formation VI

 Quotient in denominator is a form of an inhibition ratio by HBr

$$\frac{d[HBr]}{dt} = \left(\frac{2k_2 \frac{k_1}{k_2} [H_2] [Br_2]^{0.5}}{1 + \frac{k_3 [HBr]}{k_4 [Br_2]}}\right)$$

CEE690K Lecture #7

David A. Reckhow

Chain Reactions

Hoigné, Staehelin, and Bader mechanism. Ozone decomposition occurs in a chain process that can be represented by the following fundamental reactions (Weiss 1935; Staehelin et al. 1984), including initiation step 1, propagation steps 2 to 6, and break in chain reaction steps 7 and 8.

(1)
$$O_3 + OH^- \xrightarrow{k_1} HO_2 + O_2^-$$

 $k_1 = 7.0 \times 10^1 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ HO₂: hydroperoxide radical

(1')
$$HO_2 \stackrel{k_2}{\rightleftharpoons} O_2^- + H^+$$

 k_2 (ionization constant) = $10^{-4.8}$ O₂⁻: superoxide radical ion

(2)
$$O_3 + O_2^{-} \xrightarrow{k_2} O_3^{-} + O_2$$

 $k_2 = 1.6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ O₃⁻: ozonide radical ion

(3)
$$O_3^- + H^+ \stackrel{k_3}{\rightleftharpoons} HO_3$$

 $k_3 = 5.2 \times 10^{10} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ $k_{-3} = 2.3 \times 10^2 \,\mathrm{s}^{-1}$

(4)
$$HO_3 \xrightarrow{\cdots} OH + O_2$$

(5)

 $k_4 = 1.1 \times 10^5 \,\mathrm{s}^{-1}$

(5) OH + O₃
$$\stackrel{k_5}{\rightarrow}$$
 HO₄
(6) HO₄ $\stackrel{k_6}{\rightarrow}$ HO₂ + O₂

 $k_5 = 2.0 \times 10^9 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$

 $k_6 = 2.8 \times 10^4 \,\mathrm{s}^{-1}$

(7)
$$HO_4 + HO_4 \rightarrow H_2O_2 + 2O_3$$

(8)
$$HO_4 + HO_3 \rightarrow H_2O_2 + O_3 + O_2$$

The overall pattern of the ozone decomposition mechanism is shown in Figure II. The first fundamental element in the reaction diagram and in the rate constraints.

Kinetic Analysis of Experimental Data

- □ Fitting the data to rate equations
 - □ Integral Methods
 - Already discussed; depends on model
 - Uses all data; but not as robust
 - □ Differential Methods
 - Get simple estimates of instantaneous rates and fit these to a concentration dependent model
 - Quite adaptable
 - Initial Rate Methods
 - Relatively free from interference from products
 - Not dependent on common assumptions

CEE690K Lecture #7

Integral method: Simple Second Order

□ Again, the equation can be linearized to estimate "k" from data

$$\frac{1}{v_A} \frac{dc_A}{dt} = -k_2 c_A^2$$

$$\frac{1}{c_A} = \frac{1}{c_{Ao}} + 2k_{2i}$$

Time (min)

Variable Kinetic Order

□ Any reaction order, except n=1

$$\frac{dc}{dt} = -k_n c^n$$

$$\frac{1}{c^{n-1}} = \frac{1}{c_o^{n-1}} + (n-1)k_n t$$

$$c = c_o \frac{1}{\left[1 + (n-1)k_n c_o^{n-1} t\right]^{1/(n-1)}}$$

CEE690K Lecture #7

Differential Methods I

17

- □ Doesn't require assumptions on reaction order
 - □ Simple method, doing it by "eye"
 - Get estimates of instantaneous rates by drawing tangents & plotting these slopes

CEE690K Lecture #7

David A. Reckhow

Differential Methods II

18

□ Finite difference method

$$\frac{-d[A]}{dt} = k[A]^n$$

■ Start with the general linear solution

$$\frac{1}{[A]^{n-1}} - \frac{1}{[A]_0^{n-1}} = (n-1)kt$$

$$[A]^{n-1} = \left\{ (n-1)kt + \frac{1}{[A]_0^{n-1}} \right\}^{-1} \qquad [A]^n = [A] \left\{ (n-1)kt + \frac{1}{[A]_0^{n-1}} \right\}^{-1}$$

■ And substituting back, we get:

$$X = \frac{d[A]/dt}{[A]} = k[A]^{n-1} = k \left[(n-1)kt + \frac{1}{[A]_0^{n-1}} \right]^{-1}$$

■ So the reciprocal of "X" is a linear function of time

$$\frac{1}{X} = (n-1)t + \frac{1}{k[A]_0^{n-1}}$$

CEE690K Lecture #7

Differential Methods III

19

- □ Finite difference method (cont.)
 - Now we can get "X" from a time-centered finite difference approximation

$$\left(\frac{d[A]}{dt}\right)_n \approx \frac{[A]_{n-1} - [A]_{n+1}}{t_{n+1} - t_{n-1}}$$

And, for t=n

$$\frac{1}{X} \equiv \frac{[A]}{\frac{d[A]}{dt}}$$

CEE690K Lecture #7

David A. Reckhow

Initial Rate Methods

20

- Evaluated in very early stages of the reaction where:
 - Only small amounts of products have been formed
 - Reactants have essentially not changed in concentrations
- Avoids many problems of complex reactions where products continue to react

CEE690K Lecture #7

