Print version

CEE 690K ENVIRONMENTAL REACTION KINETICS

Lecture #7

Rate Expressions: Chain Reactions

Observed Rate Expression

Chain Mechanism

Initiation

$$Br_2 \xrightarrow{k_1} 2Br$$

Propagation
$$\begin{cases} Br + H_2 \xrightarrow{k_2} HBr + H \\ H + Br_2 \xrightarrow{k_4} HBr + Br \end{cases}$$

$$Br + H_2 \xleftarrow{k_3} HBr + H$$

Termination

$$2Br \xrightarrow{k_5} Br_2$$

"theoretical" Rate Expression

 $\frac{d[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$

HBr Formation II

$$\frac{d[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$$

- But radical species (H & Br) are really intermediates
 - They are not easily measured, and they are not the starting materials
 - They are also extremely reactive and never build up to any appreciable concentration
 - Thus we can make the quasi-steady state (QSS) assumption:

$$0 \approx \frac{d[Br]}{dt} = 2k_1[Br_2] + k_3[HBr][H] + k_4[Br_2][H] - k_2[H_2][Br] - 2k_5[Br]^2$$

$$0 \approx \frac{d[H]}{dt} = k_2[H_2][Br] - k_3[HBr][H] - k_4[Br_2][H]$$

Now we combine the two QSS equations with the HBr formation rate expression

HBr Formation
$$\frac{d[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$$

Solve the H-QSS for [H]

$$0 \approx \frac{d[H]}{dt} = k_2[H_2][Br] - k_3[HBr][H] - k_4[Br_2][H]$$

$$[H] = \frac{k_2[H_2][Br]}{k_3[HBr] + k_4[Br_2]}$$

And substitute this into the Br-QSS

$$0 \approx \frac{d[Br]}{dt} = 2k_1[Br_2] + k_3[HBr][H] + k_4[Br_2][H] - k_2[H_2][Br] - 2k_5[Br]^2$$

$$2k_{5}[Br]^{2} = 2k_{1}[Br_{2}] + (k_{3}[HBr] + k_{4}[Br_{2}])[H] - k_{2}[H_{2}][Br]$$

$$2k_{5}[Br]^{2} = 2k_{1}[Br_{2}] + (k_{3}[HBr] + k_{4}[Br_{2}]) \frac{k_{2}[H_{2}][Br]}{k_{3}[HBr] + k_{4}[Br_{2}]} - k_{2}[H_{2}][Br]$$

$$2k_{5}[Br]^{2} = 2k_{1}[Br_{2}] + k_{2}[H_{2}][Br] - k_{2}[H_{2}][Br]$$

$$2k_5[Br]^2 = 2k_1[Br_2]$$

$$[Br] = \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

$$k_1/k_5 = K$$

for: $Br_2 \leftrightarrow 2Br$

HBr Formation IV $\frac{a[HBr]}{dt} = k_2[H_2][Br] + k_4[Br_2][H] - k_3[HBr][H]$

Substituting this back into the equation for [H] gives us expressions without intermediates

$$[H] = \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]} \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$
 and
$$[Br] = \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

Now we can substitute back into the original HBr expression

$$\frac{d[HBr]}{dt} = k_2[H_2] \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} + \left(k_4[Br_2] - k_3[HBr]\right) \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]} \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

And simplify

$$\frac{d[HBr]}{dt} = \left(k_2[H_2] + \left(k_4[Br_2] - k_3[HBr]\right) \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]} \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

HBr Formation
$$V \frac{d[HBr]}{dt} = \left(k_2[H_2] + \left(k_4[Br_2] - k_3[HBr]\right) \frac{k_2[H_2]}{k_3[HBr] + k_4[Br_2]}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

Further simplifying

$$\frac{d[HBr]}{dt} = \left(k_2[H_2] + \frac{k_2[H_2]k_4[Br_2] - k_2[H_2]k_3[HBr]}{k_3[HBr] + k_4[Br_2]}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

$$\frac{d[HBr]}{dt} = \left(k_2[H_2] + \frac{k_2[H_2] - k_2[H_2] \frac{k_3[HBr]}{k_4[Br_2]}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

$$\frac{d[HBr]}{dt} = \left(\frac{k_2[H_2] + k_2[H_2] \frac{k_3[HBr]}{k_4[Br_2]}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}} + \frac{k_2[H_2] - k_2[H_2] \frac{k_3[HBr]}{k_4[Br_2]}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5}$$

$$\frac{d[HBr]}{dt} = \left(\frac{2k_2[H_2]}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right) \left(\frac{k_1}{k_5}[Br_2]\right)^{0.5} \qquad \frac{d[HBr]}{dt} = \left(\frac{2k_2\frac{k_1}{k_2}[H_2][Br_2]^{0.5}}{1 + \frac{k_3[HBr]}{k_4[Br_2]}}\right)$$

$$\frac{d[HBr]}{dt} = \left(\frac{2k_2 \frac{k_1}{k_2} [H_2] [Br_2]^{0.5}}{1 + \frac{k_3 [HBr]}{k_4 [Br_2]}}\right)$$

$$\frac{d[HBr]}{dt} = \frac{k[H_2][Br_2]^{0.5}}{1 + k'^{[HBr]/[Br_2]}}$$

HBr Formation VI

 Quotient in denominator is a form of an inhibition ratio by HBr

$$\frac{d[HBr]}{dt} = \left(\frac{2k_2 \frac{k_1}{k_2} [H_2] [Br_2]^{0.5}}{1 + \frac{k_3 [HBr]}{k_4 [Br_2]}}\right)$$

Chain Reactions

Hoigné, Staehelin, and Bader mechanism. Ozone decomposition occurs in a chain process that can be represented by the following fundamental reactions (Weiss 1935; Staehelin et al. 1984), including initiation step 1, propagation steps 2 to 6, and break in chain reaction steps 7 and 8.

(1)
$$O_3 + OH^- \xrightarrow{k_1} HO_2 + O_2^-$$

$$k_1 = 7.0 \times 10^1 \text{ M}^{-1} \text{ s}^{-1}$$

HO₂: hydroperoxide radical

(1')
$$HO_2 \stackrel{k_2}{\rightleftharpoons} O_2^- + H^+$$

$$k_2$$
 (ionization constant) = $10^{-4.8}$ O₂⁻: superoxide radical ion

(2)
$$O_3 + O_2^{-\frac{k_2}{2}} O_3^{-1} + O_2$$

$$k_2 = 1.6 \times 10^9 \,\text{M}^{-1} \,\text{s}^{-1}$$

O₃⁻: ozonide radical ion

(3)
$$O_3^- + H^+ \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} HO_3$$

$$k_3 = 5.2 \times 10^{10} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$$

 $k_{-3} = 2.3 \times 10^2 \,\mathrm{s}^{-1}$

$$(4) \qquad HO_3 \xrightarrow{\sim} OH + O_2$$

$$k_4 = 1.1 \times 10^5 \,\mathrm{s}^{-1}$$

(5)
$$OH + O_3 \xrightarrow{k_5} HO_4$$

$$k_5 = 2.0 \times 10^9 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$$

(6)
$$HO_4 \stackrel{k_6}{\rightarrow} HO_2 + O_2$$

$$k_6 = 2.8 \times 10^4 \,\mathrm{s}^{-1}$$

(7)
$$HO_4 + HO_4 \rightarrow H_2O_2 + 2O_3$$

(8)
$$HO_4 + HO_3 \rightarrow H_2O_2 + O_3 + O_2$$

The overall pattern of the ozone decomposition mechanism is shown in Figure II-The first fundamental element in the reaction diagram and in the rate consta

Kinetic Analysis of Experimental Data

- □ Fitting the data to rate equations
 - Integral Methods
 - Already discussed; depends on model
 - Uses all data; but not as robust
 - Differential Methods
 - Get simple estimates of instantaneous rates and fit these to a concentration dependent model
 - Quite adaptable
 - Initial Rate Methods
 - Relatively free from interference from products
 - Not dependent on common assumptions

10

 \square When n=1, we have a simple first-order reaction

This results in an "exponential decay"

Integral Method: First order

- This equation can be linearized
- □ good for significant signif

$$\frac{dc_A}{dt} = -kc_A$$

Simple Second Order

$$2A \xrightarrow{k_2} products$$

$$\frac{1}{v_A} \frac{dc_A}{dt} = -k_2 c_A^2$$

When n=2, we have a simple second-order reaction

This results in an especially wide range in rates

More typical to have 2nd order in each of two different reactants

Integral method: Simple Second Order

 Again, the equation can be linearized to estimate "k" from data

$$\frac{1}{v_A} \frac{dc_A}{dt} = -k_2 c_A^2$$

$$\frac{1}{c_A} = \frac{1}{c_{Ao}} + 2k_2t$$

Variable Kinetic Order

□ Any reaction order, except n=1

$$\frac{dc}{dt} = -k_n c^n$$

$$\frac{1}{c^{n-1}} = \frac{1}{c_o^{n-1}} + (n-1)k_n t$$

$$c = c_o \frac{1}{\left[1 + (n-1)k_n c_o^{n-1} t\right]^{\frac{1}{(n-1)}}}$$

15

Two different reactants

$$rate \equiv \frac{1}{V} \frac{d\xi}{dt} \equiv \frac{1}{v_A} \frac{d[A]}{dt} =$$

ent reactants
$$rate = \frac{1}{V} \frac{d\xi}{dt} = \frac{1}{V_A} \frac{d[A]}{dt} = \begin{bmatrix} \frac{dx}{dt} = k_2[A][B] \\ = k_2([A]_0 - x)([B]_0 - x) \end{bmatrix}$$

- Initial Concentrations are different; $[A]_0 \neq [B]_0$
 - The integrated form is:

$$\frac{1}{[A]_0 - [B]_0} \ln \frac{[B]_0 [A]}{[A]_0 [B]} = k_2 t$$

Which can be expressed as:

$$\log \frac{[A]}{[B]} = 0.43k_2 ([A]_0 - [B]_0)t - \log \frac{[B]_0}{[A]_0}$$

Integral Method: Mixed Second Order

$$A + B \xrightarrow{k_2} products$$

■ Initial Concentrations are the same; $[A]_0 = [B]_0$

$$\frac{dx}{dt} = k_2[A][A] = k_2([A]_0 - x)([A]_0 - x)$$

■ The integrated form is:

Which can be integrated:

$$[A] = [B] = [A]_0 - x = [B]_0 - x$$

$$\int \frac{d[A]}{[A]^2} = \int v_A k_2 dt \quad \Longrightarrow \quad \frac{1}{[A]} - \frac{1}{[A]_0} = 2k_2 t$$

Differential Methods I

- Doesn't require assumptions on reaction order
 - Simple method, doing it by "eye"
 - Get estimates of instantaneous rates by drawing tangents & plotting these slopes

Differential Methods II

□ Finite difference method

$$\frac{-d[A]}{dt} = k[A]^n$$

Start with the general linear solution

$$\frac{1}{[A]^{n-1}} - \frac{1}{[A]_0^{n-1}} = (n-1)kt$$

$$[A]^{n-1} = \left\{ (n-1)kt + \frac{1}{[A]_0^{n-1}} \right\}^{-1} \qquad [A]^n = [A] \left\{ (n-1)kt + \frac{1}{[A]_0^{n-1}} \right\}^{-1}$$

And substituting back, we get:

$$X = \frac{d[A]/dt}{[A]} = k[A]^{n-1} = k \left[(n-1)kt + \frac{1}{[A]_0^{n-1}} \right]^{-1}$$

So the reciprocal of "X" is a linear function of time

$$\frac{1}{X} = (n-1)t + \frac{1}{k[A]_0^{n-1}}$$

Differential Methods III

- □ Finite difference method (cont.)
 - Now we can get "X" from a time-centered finite difference approximation

$$\left(\frac{d[A]}{dt}\right)_{n} \approx \frac{[A]_{n-1} - [A]_{n+1}}{t_{n+1} - t_{n-1}}$$

And, for t=n

$$\frac{1}{X} \equiv \frac{[A]}{\frac{d[A]}{dt}}$$

Initial Rate Methods

- Evaluated in very early stages of the reaction where:
 - Only small amounts of products have been formed
 - Reactants have essentially not changed in concentrations
- Avoids many problems of complex reactions where products continue to react

□ <u>To next lecture</u>