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d[HBr] _ k[H,][Br,]
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Observed Rate Expression

Chain Mechanism

Initiation Br, — > 2Br
Propagation [ Br+H,—% 5 HBr+H Br+H, <% HBr+H
H + Br,—“—HBr +Br
Termination  2Br—% B,
k,lk5T
Br }
“theoretical” Rate Expression T kg ’
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d[HBr
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d[HBr]

HBr Formation I < = Ke[H.1[Brl+ k,[Br][H]- k,[HBr][H]

But radical species (H & Br) are really intermediates

They are not easily measured, and they are not the starting
materials

They are also extremely reactive and never build up to any
appreciable concentration

Thus we can make the quasi-steady state (QSS) assumption:

0~ LB 2k Br, 1+ K [HBIITHI + K, [Br][H] -k, [H, 1[Br] - 2k, [Br’
0~ Sk, [H,1[Br -, [HBFI[H] - K, [BrI[H]

Now we combine the two QSS equations with the HBr formation
rate expression
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d[HBr]

HBr Formation lll o = K[H.1[Br1+ k,[Br][H]-k,[HBr][H]

Solve the H-QSS for [H] 0= i W, 1181 k. [HBrTH -k, (B 1TH]

_ k,[H,][Br]
[H]_ks[HBr]+k4[Br2] &

And substitute this into the Br-QSS

5. dIBr]

g = 2alBrl+k[HBr][H]+k,[Br, ][H]- k,[H,1[Br]-2k;[BrT’

2Kk[Br1? = 2k [Br,]+ (k,[HBr]+ k,[Br,]H]-k,[H,1[Br] <

K,[H,][Br]
k,[HBr]+k,[Br,]

2ks[Br]® = 2k [Br, ]+ (ks[HBr]+k,[Br,]) —k,[H,1[Br]

st[Br]2 = 2k,[Br, ]+ k,[H,][Br]-k,[H,][Br]
2k [Br]” = 2k,[Br, ] @ Jks = K

05
‘ | [Br] _ (k]_[Brz]j for: BI‘2(—)QBI’
k5
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d[HBr]

HBr Formqll-ion Iv T:kz[Hz][Br]+k4[Br2][H]_k3[HBr][H]

Substituting this back into the equation for [H] gives us
expressions without intermediates

) kZ[H 2] kl 0.5 ) kl 0.5
[H]= k3[HBr]+k4[Br2](k5 [BrZ]] and [Br]_(k[BrZ]j

5
Now we can substitute back into the original HBr expression

d[HBr]
dt

) ﬁ 0.5 i kz[Hz] kl 0.5
—kZ[Hzl(kS[Brzlj (k.8 k3[HBr])k3[HBr]+k4[Br2](k5 [Brzlj

And simplify

d[HBI] _ ) k,[H,] K o)
- —[kZ[H21+(k4[Br2] kg[HBr])kg[HBr]+k4[Br2]](k5[BrZ]j
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o d[HBr] - K,[H,] k. ”
HBr Formation V - tieaswenge i o)

Further simplifying 05
d[HBr] _ [kz[Hz]"‘ kz[H 2]k4[Br2]_k2[H z]ks[HBr]j( El [Bl’z]j .

dt K,[HBr]+k,[Br,]
d[HBr] _| [H ]+kZ[HZ]_kZ[Hz]kki[[gir]] kl[Br] )
dt 2L 1+ I:(i[[lgir]] k. 2
d[HBr] kz[H2:+k2[H2]IE[[HBE:;]] Ko[H21-K;[H,. IT<34[[|_B”?zr]] Ky B "
dt - 1 ks[HBr] t 1 ks[HBr] [ rz]
+ k4[Br, ] + ky[Br;] 5
d[HBr] _[ 2k,[H,] (kl (Br ])O'S j> d[HBr] _ 2k, ¢ [H,1[Br,]"
v P R

d[HBr] _k[H,][Br,]*
dt 1+ k' [HB%BrZ] David A. Reckhow




HBr Formation VI

1 Quotient in denominator is a form of an inhibition
ratio by HBr

d[HBr]
dt

|

2k, ¢ [H,1[Br,]**

ks[HBr]
1+ k,[Br,]

J

k,lk5 )
Br
k4
~—_ k3
k2
k3[HBI’] * k4[BI’2]
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Chain Reactions

o
Hoigné, Staehelin, and Bader mechanism. Ozone decomposition occurs in a
chain process that can be represented by the following fundamental reactions (Weiss O, H,O
1935; Stachelin et al. 1984), including initiation step 1, propagation steps 2 to 6, and
break in chain reaction steps 7 and 8. OH- /
_ h s by =7.0 x 10' M7 571
(1) Uy T WL = HEH % T HO; : hydroperoxide radical ‘ J,

1 HO f O,~ + H* ky (ionization constant) = 107*® O2 %
(1) I O,7: superoxide radical ion o HO,
2
o O
Lk by =1.6 x 10° M~ 157! I/
@ G Gy — 0y~ + O O3 : ozonide radical ion O5
Os
HO

_ ks k3 =52 x 1010 M5!
+ 3
) Op" + K¢ HOy by =23 x 102! H+
4
(4) HO; = OH + O, ky =11 x 10°s7! HO;
kes, C _ _
(5) OH + O3 — HOy ks =2.0 x 10°M ™' 57! \'\OH/
ks 4 —1 O,
(6) HO,— HO, + O, ke = 2.8 X 10*s
(7) HO, + HO4 — H,O, + 203 Cha'n
Breakdown
(8) HO, + HO3 — H,O, + O3 + O,
H,O

The overall pattern of the ozone decomposition mechanism is shown in Figure II-
The first fundamental element in the reaction diagram and in the_rate, const? David A. Reckhow



Kinetic Analysis of Experimental Data

Fitting the data to rate equations
Integral Methods

Already discussed; depends on model

Uses all data; but not as robust

Differential Methods

Get simple estimates of instantaneous rates and fit these to
a concentration dependent model

Quite adaptable
Initial Rate Methods

Relatively free from interference from products
Not dependent on common assumptions
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Simple first order

When n=1, we
have a simple
first-order
reaction

This results in an
“exponential
decay”
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Integral Method: First order

71 This equation can

be linearized

1 good for
assessment of “k’
from data

dc,
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dt i
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Simple Second Order

2 A—*2 5 products

90 —k,c?
— T Rabp
v, dt
When n=2, we have a simple second-order
reaction %0 -
This results in an 80 "\ 1
: : c 70 c—¢C
especu.:llly wide S o \ Ch = LA 1 kot
range in rates g 0 \ 2~ Ao
More typical to % 40 \A
have 2" order % 30 N k, =0.0015L/mg/min
in each of two O 20 2 re—
. A—,
different 10 A
reactants 0 ! | | |
0 20 40 60 80
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Integral method: Simple Second Order
B

1 Again, the equation can be linearizedto 1 dc, ke
estimate “k” from data v, dt 2
Time (min)
1 1 0 20 40 60 80
=—+2k,t 012 | | | |
CA CAo - 01 A
9 '
< 0.08
: K
& 0.06 i X
§ / Slope
o 0.04 A
8 . 2k, =00015L/mg/min
— 0.02
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Variable Kinetic Order

Any reaction order, except n=1

E:—k c’

dt " 1 1

h+n 1k ¢t [ (-0
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Mixed Second Order A+ B—*2— products

Two different reactants X [AI[B]
rate:ld_gziM— dt
SVdt v, dt B = kz([A]o _X)([B]o _X)
Initial Concentrations are different; [A],#[B],
The integrated form is: 1 In [BI,[A] It
[Al,~[B], [AL[B]

Which can be expressed as: [A] [B]
Iogﬁ = 0.43k, ([A], -[B], }t —log -—°

LAl

>
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Integral Method: Mixed Second Order

[Al

[Aly

A+ B —<— products

Initial Concentrations are the same; [A],=[B],

- [Al=[B]=[Al, - X =[B], - X
pre K [AI[A]

- k2([A]O - X)([A]O _ X) '[ d[A] I k dt E>
= The integrated form is: [Al [A]o .

@

i:2k2t+ 1
(Al 7 [Al

® Which can be integrated:

>
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Differential Methods |

Doesn’t require assumptions on reaction order
Simple method, doing it by “eye”
Get estimates of instantaneous rates by drawing tangents &

plotting these slopes

—d[A] _ | A
gt LA A

Iog(_ C:jEA]j =logk +nlog[A]

[A]

Log(-d[A]/dt

N
Ll

v

time
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Differential Methods Il

—d[A]
dt

Finite difference method

Start with the general linear solution

1 1
— = (n -1kt
= e Y

n-1 _ . 1 n _ . 1 h
[A] _{(n 1)kt+[A]81} ) [A] —[A]{(n 1)kt+[A]81}

And substituting back, we get:
d[A]

— dt _ n-1 _ _ 1 B
X = 7T K[A]"" = k{(n 1kt + [A]gl}

So the reciprocal of “X” is a linear function of time
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Differential Methods Il

1 Finite difference method (cont.)

Now we can get “X” from a time-centered finite

difference approximation

(d[A]j z[A]n—l_[A]ml /
dt )t -t

n+l =~ ‘n-1

Ll

® And, for t=n

1 _ [A] 1/X </
X W
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Initial Rate Methods

Evaluated in very early stages of the reaction
where:

Only small amounts of products have been formed

Reactants have essentially not changed in
concentrations

Avoids many problems of complex reactions where
products continue to react
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O To next lecture
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