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Chlorination of Phenol
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How did Morris & Lee get 
these rate data?
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 Reaction scheme for the chlorination of phenoxide ion 
(adapted from Lee and Morris (1962) and Burttschell et al. 
(1959)) with rate constants and ratios percentage obtained 
from Gallard and von Gunten (2002) and Acero et al. 
(2005b). 

From: Deborde & von Gunten, 2008 [Wat. Res. 42(1)13]

Absorbance data?
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Kinetic Analysis of Experimental Data
5

 Fitting the data to rate equations
 Integral Methods
 Already discussed; depends on model
 Uses all data; but not as robust

 Differential Methods
Get simple estimates of instantaneous rates and fit these to 

a concentration dependent model
Quite adaptable

 Initial Rate Methods
 Relatively free from interference from products
 Not dependent on common assumptions
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Simple first order

 When n=1, we 
have a simple 
first-order 
reaction

 This results in an 
“exponential 
decay”

Akc
dt

dc


kt
AoA ecc 

k  0 032 1. min

productsA k
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Integral Method: First order

 This equation can 
be linearized

 good for 
assessment of “k” 
from data

A
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Simple Second Order

 This results in an 
especially wide 
range in rates

 More typical to 
have 2nd order 
in each of two 
different 
reactants
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When n=2, we have a simple second-order 
reaction

productsA k 22
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Integral method: Simple Second Order

 Again, the equation can be linearized to 
estimate “k” from data
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Variable Kinetic Order

 Any reaction order, except n=1
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Mixed Second Order
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 Two different reactants

 Initial Concentrations are different; [A]0≠[B]0
 The integrated form is:

 Which can be expressed as:

productsBA k 2


dt
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Integral Method: Mixed Second Order
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 Initial Concentrations are the same; [A]0=[B]0

 The integrated form is:

 Which can be integrated:

productsBA k 2

  xAxAk

AAk
dt

dx
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Differential Methods I
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 Doesn’t require assumptions on reaction order
 Simple method, doing it by “eye”
Get estimates of instantaneous rates by drawing tangents & 

plotting these slopes
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Differential Methods II
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 Finite difference method
 Start with the general linear solution

 And substituting back, we get:

 So the reciprocal of “X” is a linear function of time
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Differential Methods III
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 Finite difference method (cont.)
 Now we can get “X” from a time-centered finite 

difference approximation

 And, for t=n
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Initial Rate Methods

David A. ReckhowCEE690K  Lecture #6

16

 Evaluated in very early stages of the reaction 
where:
 Only small amounts of products have been formed

 Reactants have essentially not changed in 
concentrations

 Avoids many problems of complex reactions where 
products continue to react
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Initial Rate II
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 Run multiple reactions at different staring concentrations

 Measure short-term concentrations of starting materials

 Estimate initial rate and plot vs starting concentration
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 To next lecture


