Print version

CEE 690K ENVIRONMENTAL REACTION KINETICS

Lecture #4

<u>Rate Expressions</u>: Sequential Reactions Brezonik, pp.39-50, 240-241

David A. Reckhow Introduction

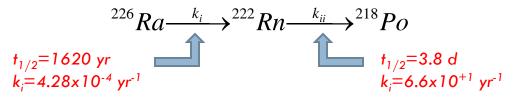
Secular Equilibrium

 $\Box \text{ If } k_{ii} >> k_i$

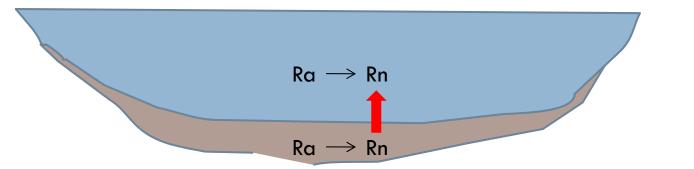
The ratio of [B]/[A] approaches a constant

Divide equation for [B] by the equation for [A]

$$[B] = \frac{k_i [A]_0}{k_{ii} - k_i} \left\{ e^{-k_i t} - e^{-k_{ii} t} \right\} \qquad [A] = [A]_0 e^{-k_i t}$$
$$\frac{[B]}{[A]} = \frac{k_i e^{k_i t}}{k_{ii} - k_i} \left\{ e^{-k_i t} - e^{-k_{ii} t} \right\}$$
$$= \frac{k_i}{k_{ii} - k_i} \left\{ 1 - e^{-(k_{ii} - k_i)t} \right\}$$


• So when $k_{ii} >> k_i$, then the exponential approaches zero

$$\frac{[B]}{[A]} \to \frac{k_i}{k_{ii} - k_i} \approx \frac{k_i}{k_{ii}}$$


Example: Radium decay I

3

□ Natural ²²⁶Ra decays as follows:

- Radon is used as tracer for vertical mixing from sediments to water column; Ra is mostly in sediments
 - Procedure:
 - Collect water column sample & measure purged Rn
 - Allow sample to reach secular equilibrium and again measure purged Rn
 - Difference is used to calculate amount of Rn diffused from sediments

David A. Reckhow

Radium decay II

4

How long to wait for secular equilibrium?

$$\frac{[B]}{[A]} = \frac{k_i}{k_{ii} - k_i} \left\{ 1 - e^{-(k_{ii} - k_i)t} \right\}$$
$$\frac{[Rn]}{[Ra]} = \frac{4.28 \times 10^{-4}}{66 - 4.28 \times 10^{-4}} \left\{ 1 - e^{-(66 - 4.28 \times 10^{-4})t} \right\}$$
$$\cong 0.0000065 \left\{ 1 - e^{-66t} \right\}$$

• % of equilibrium value = $100\%(1-e^{-66t})$

Chain Reactions I

Description

- A multi-step reaction mechanism where the reactants form intermediates that react with more reactants that yield products plus more intermediates
- Quite common for free radical reactions
- □ Three stages
 - Initiation (I) initiators
 - Propagation (P) promotors
 - Termination (T) scavengers

Evidence

- Induction period
- Unusual catalysis or repression
- Strange rate equations (product in denominator, fractional order)
- Unusual surface effects

Chain Reactions II

Simple Generic Cycle carriers $A_2 \leftrightarrow 2A$ $A + B_2 \leftrightarrow P + B$ $B + A_2 \leftrightarrow P + A$ $A_2 + B_2 \rightarrow 2P$

"A" and "B" are reactive intermediates, or chain carriers

В

Chain Reactions

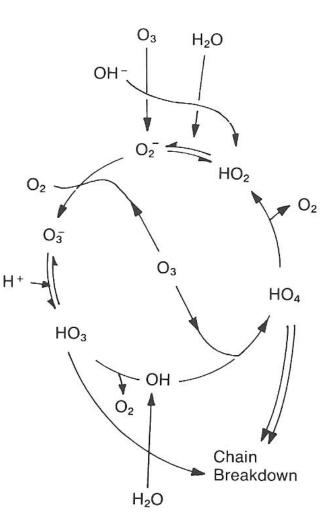
Hoigné, Staehelin, and Bader mechanism. Ozone decomposition occurs in a chain process that can be represented by the following fundamental reactions (Weiss 1935; Staehelin et al. 1984), including initiation step 1, propagation steps 2 to 6, and break in chain reaction steps 7 and 8.

(1) $O_3 + OH^- \xrightarrow{k_1} HO_2 + O_2^$ $k_1 = 7.0 \times 10^1 \text{ M}^{-1} \text{ s}^{-1}$ $HO_2 : hydroperoxide radical$

 k_2 (ionization constant) = $10^{-4.8}$

 O_2^- : superoxide radical ion

 $k_3 = 5.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$


 $k_{-3} = 2.3 \times 10^2 \,\mathrm{s}^{-1}$

- $(1') \qquad HO_2 \rightleftharpoons^{k_2} O_2^- + H^+$
- (2) $O_3 + O_2^{-} \xrightarrow{k_2} O_3^{-} + O_2$ $k_2 = 1.6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ O_3^{-} : ozonide radical ion

(3)
$$O_3^- + H^+ \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} HO_3$$

- (4) $HO_3 \rightarrow OH + O_2$ $k_4 = 1.1 \times 10^5 \text{ s}^{-1}$
- (5) $OH + O_3 \xrightarrow{k_5} HO_4$ $k_5 = 2.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$
- (6) $HO_4 \xrightarrow{k_6} HO_2 + O_2$ $k_6 = 2.8 \times 10^4 \text{ s}^{-1}$
- (7) $HO_4 + HO_4 \rightarrow H_2O_2 + 2O_3$
- $(8) \qquad HO_4 + HO_3 \rightarrow H_2O_2 + O_3 + O_2$

The overall pattern of the ozone decomposition mechanism is shown in Figure II-The first fundamental element in the reaction diagram and in the rate consta

Kinetic Modeling

□ In-class use of <u>Scientist</u>

Consecutive 2nd order reactions

// Example - A --> B --> C Kinetics
// This model describes a system having a second order conversion from A to B.
// B is subsequently converted to C by another second order reaction.

IndVars: TIME DepVars: A, B, C, D Params: A0, D0, KAB, KBC,

A' = -KAB*A*D D' = -KAB*A*D-KBC*B*D B' = KAB*A*D - KBC*B*DC' = KBC*B*D

// Initial Conditions TIME = 0.0 A = A0 D = D0 B = 0.0 C = 0.0CEE690K Lecture #4

□ <u>To next lecture</u>