Mechanisms: Haloform Reaction

Chlorine + acetone

- Morris & Baum, 1978
- Brezonik, 1994

Figure 6.35: Reaction scheme for production of haloform from acetone by the classic haloform reaction.
Haloform reaction: initial step

- Three potential pathways to enolate
 - Reaction with water (K_O), hydroxide (K_{OH}), and proton (K_H)
 - $k_f = K_O + K_{OH} [OH^-] + K_H [H^+]$
 - For acetone, the OH pathway dominates above pH 5.5

<table>
<thead>
<tr>
<th>Substance</th>
<th>pK_a</th>
<th>K_{OH} l/mole-sec</th>
<th>K_H l/mole-sec</th>
<th>t_{10} pH 7, hr</th>
<th>t_{10} pH 8.5, hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>20</td>
<td>4.7×10^{10}</td>
<td>0.25</td>
<td>2.9 $\times 10^9$</td>
<td>7500 385</td>
</tr>
<tr>
<td>Chloroacetone</td>
<td>16.5</td>
<td>5.3 $\times 10^8$</td>
<td>93</td>
<td>6.3 $\times 10^8$</td>
<td>21 1.0</td>
</tr>
<tr>
<td>Acetylacetone</td>
<td>15</td>
<td>7.3 $\times 10^8$</td>
<td>450</td>
<td>1.3 $\times 10^8$</td>
<td>3.7 0.21</td>
</tr>
<tr>
<td>Pyridine</td>
<td>4.5 $\times 10^7$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl pyruvate</td>
<td>16</td>
<td>4.7 $\times 10^8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formylacetone</td>
<td>9.0</td>
<td>1.1 $\times 10^9$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl acetacetate</td>
<td>10.7</td>
<td>1.2 $\times 10^9$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malonic acid</td>
<td>1.7 $\times 10^8$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is k_r?

Reactions in Series

$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$

$k_1 = k_2 = k_3 = 0.1 \text{ day}^{-1}$

Stumm & Morgan
Fig. 2.9
Pg. 68
Consecutive Reactions I

- Overall rate determined by slowest step
 - If $k_i >> k_{ii}$
 - A rapidly forms B which then reacts slowly
 - $\frac{d[C]}{dt} = k_{ii}[B]$
 - If $k_i << k_{ii}$
 - B never builds up; it reacts as soon as it is formed
 - $\frac{d[C]}{dt} = k_i[A]$
 - If $k_i ~ k_{ii}$
 - B slowly builds up then disappears
 - Rate must consider both reactions

Consecutive Reactions II

- Writing a separate equation for each species

\[
\begin{align*}
\frac{d[A]}{dt} &= -k_i[A] \\
\frac{d[B]}{dt} &= k_i[A] - k_{ii}[B] = k_i \left[A \right] - k_{ii}[B] \\
\frac{d[C]}{dt} &= k_{ii}[B] \\
\end{align*}
\]

\[
\begin{align*}
[A] &= [A]_0 e^{-k_i t} \\
[B] &= \frac{k_i [A]_0}{k_{ii} - k_i} (1 - e^{-k_{ii} t} - e^{-k_i t}) \\
[C] &= \frac{k_i [A]_0}{k_{ii} - k_i} (1 - e^{-k_{ii} t}) \\
\end{align*}
\]

Note that this k_i was inadvertently left out of equ. 2-47 in Brezonik

$$k_i = 1 \text{ hr}^{-1} \quad k_{ii} = 4 \text{ hr}^{-1}$$

$$k_i = 1 \text{ hr}^{-1} \quad k_{ii} = 1 \text{ hr}^{-1}$$

$$k_i = 4 \text{ hr}^{-1} \quad k_{ii} = 1 \text{ hr}^{-1}$$
Limiting Cases

- If $k_i >> k_{ii}$
 \[[B] = \frac{k_i [A]_0}{k_i - k_{ii}} \left(e^{-k_{ii} t} - e^{-k_i t} \right) \]
- If $k_{ii} >> k_i$
 \[[B] = \frac{k_i [A]_0}{k_{ii}} e^{-k_i t} \]

Focusing on $[B]$

- Often we are concerned with the maximum concentration of “B”
 - This occurs when $d[B]/dt = 0$
 \[\frac{d[B]}{dt} = k_i [A] - k_{ii} [B] \]
 \[k_i [A] = k_{ii} [B]_{\text{max}} \]
 \[[B]_{\text{max}} = \frac{k_i}{k_{ii}} [A] \]
 \[\frac{k_i}{k_{ii}} [A]_0 e^{-k_{ii} t_{\text{max-B}}} \]
 - And combining this with the general solution for $[B]$: \[t_{\text{max-B}} = \frac{1}{k_i - k_{ii}} \ln \left(\frac{k_i}{k_{ii}} \right) \]
Chlorination of Phenol

<table>
<thead>
<tr>
<th>pH</th>
<th>Phenol</th>
<th>2-Chlorophenol</th>
<th>4-Chlorophenol</th>
<th>2,4-Dichlorophenol</th>
<th>2,4,6-Trichlorophenol</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.08E2</td>
<td>4.03E3</td>
<td>9.40E1</td>
<td>2.08E2</td>
<td>6.29E2</td>
</tr>
<tr>
<td>6</td>
<td>4.03E2</td>
<td>5.84E3</td>
<td>1.34E2</td>
<td>4.03E2</td>
<td>8.84E2</td>
</tr>
<tr>
<td>7</td>
<td>2.25E3</td>
<td>5.18E3</td>
<td>1.78E3</td>
<td>2.25E3</td>
<td>6.03E3</td>
</tr>
<tr>
<td>8</td>
<td>6.15E3</td>
<td>8.16E3</td>
<td>2.30E3</td>
<td>6.15E3</td>
<td>1.45E3</td>
</tr>
<tr>
<td>9</td>
<td>6.14E3</td>
<td>3.21E3</td>
<td>5.40E3</td>
<td>6.14E3</td>
<td>1.54E3</td>
</tr>
<tr>
<td>10</td>
<td>2.94E3</td>
<td>4.39E3</td>
<td>6.32E3</td>
<td>3.09E3</td>
<td>9.56E2</td>
</tr>
<tr>
<td>11</td>
<td>4.38E2</td>
<td>4.60E3</td>
<td>1.16E3</td>
<td>5.78E2</td>
<td>5.44E2</td>
</tr>
<tr>
<td>12</td>
<td>4.50E1</td>
<td>4.65E1</td>
<td>8.39E1</td>
<td>3.15E1</td>
<td>1.81E1</td>
</tr>
</tbody>
</table>

pH effects

- Role of pH in reactant speciation
 - HOCl vs OCl⁻
 - Phenolic vs phenate
- Maximum at mid-pH
- Between K_a’s for HOCl and phenolic
Models I

From: Lee, 1967

Modeling phenol chlorination II

[Diagrams showing reactions and concentrations over time]
Scientist & Acuchem

Time (min)

Concentration (M)

Phenol
2-Chlorophenol
4-Chlorophenol
2,4-Dichlorophenol
2,6-Dichlorophenol
2,4,6-Trichlorophenol
Ring Cleavage Products

0.10 mM Chlorine Dose

To next lecture