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CEE 697K
ENVIRONMENTAL REACTION KINETICS

Lecture #1

Introduction: Basics
Brezonik, pp.1-31



http://www.ecs.umass.edu/cee/reckhow/courses/ERK/slides/ERKl01p.pdf

Kinetics

Examples
Fe*? oxidation by O,

almost instantaneous at high pH

quite slow at low pH
high D.O. may help

Oxidation of organic material

Formation of solid phases
Aluminum hydroxide

Quartz sand
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Utility of Kinetics

Empirical Analysis
Moderate Rate

Estimate reaction time (characteristic time) for;

Engineered systems (size of tanks)
Natural Aquatic Systems (WQ modeling)
Atmospheric systems (air pollution modeling)

Fast Rates

Evaluate simple competitive kinetics
Determine complex reaction stoichiometries

Define complex or cyclic reaction webs

Postulate major pathways

Slow Rates

Reaction time for global processes
Human impacts

Theoretical Analysis
All Rates: understand mechanisms

Predict other reaction kinetics
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Chemistry and Environmental Engineering

Math

!

Biology : Environmental . Physics

Engineering

T

Chemistry
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Engineered & Natural Systems
=

1 Kinetics is the source of reactions and rates

Physico-
Reactions \ chemical

Processes \

Aquatic
Chemistry

Process Environmental
Design Modeling

Surface

Transport
Chemistry

Kinetics

Env. Micro /
Biological
Processes
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Relation with other Chemistry Disciplines

Physiccll

Y,
Inorgani ‘l

Chemistry “ 2

Thehme

1 With water chemistry, A cornerstone of the good grad
programs in our field
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Time Scales & Kinetics

Engineered Systems
—

| ‘Fast’ Kinetics

‘Slow’ Kinetics|
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a}'g?gnscgéfs Fast diffusion-controlled
Age of y reaction in water
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Mixing times (small lakes) | Decompoasition
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First air- Hydrogen bond

breathing One month formation

animals

t,, for Fe?
oxidation (pH 9) Molecular period
: H:C exchange rates vibration
Hydrolysis of At ge
. refractory alky! | || Mixing times (labile metal ions)
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Figure 1-1. A logarithmic time scale for fast and slow processes in aquatic systems, placed in the context of other important events. [Modified from Onwood,
D., J. Chem. Ed., 63, 680 (1986).]



Time and Length scales

Residence/Response Time 1 (d)
a b
105 104 10 102 10 1 101 102 102
Horizonlal Space Scale (km) 1 ! 1 1
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! o TPP atpH in () — , ——
(sterile conditions; s Al'3 HjO exchange (1= 10-*d)
Figura:4-16} Hydrolysis of alkyl halides
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(Figure 4-14b)
10-2|— | | | | | | T T T T
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Figure 1-2. (a) Correlation between characteristic time and length scales for important water quality problems (Chapra, S. C. and K. H. Reckhow,
Engineering Approaches for Lake Management, Vol. 2, Ann Arbor Science/Butterworth, Boston, 1983. With permission.); (b) time scales for
mixing processes and scme chemical and biological processes in aquatic systems. Solid lines: typical range; dashed lines: less common cases.

[Based on Imboden, D. M. and R. P. Schwarzenbach, in Chemical Processes in Lakes, W. Stumm (Ed.), Wiley-Interscience, New York, 1985,
p. 1]
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Sulfur in lakes |

Forms Me’rhioninse 0
GGS: H2S, 802 HSCI \—/\‘/U\DH

Liquid SO, 2, HS", Amino acids with S N
Solids: MeS,, pyrites (FeS,), elemental S Cysfﬁinﬁ O
Mass Transfer 25" 0H
Air:water NgH

Sediment:water

Reactions
Chemical: oxidation, reduction, precipitation, complexation,
hydrolysis

Biological: biosynthesis, use as TEA, release
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FLUX (meg/m?2month)

Sulfur in Lakes |l

Brezonik; example 1-2

Sulfur cycling depends on biotic
& abiotic redox kinetics, precip,
dissolution, complexation, etc.
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Sulfur in lakes (cont.)

20 SOz, pegiL

Typical sulfate depth profile
around sediment water interface

Depth (cm)

404 ANC, peg/L
lC‘ ‘ 1;}0 2&)0 360
July & Sept. 1990
pH 4.7
Kinetics of abiotic oxidation of
sulfide species e .
25 A
.g x
g 2.4 HS- "x 3_2
= B x X0
P : S
1.7 x
0 2 4 6 8 10 i2
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Sulfur in lakes (cont.)

Mackinawite (FeS) P _

Forms in reduced sediments ; Jis.0

0.5

Dissolves by first order rate,
also catalyzed by low pH

d[S .
[dt]mt :C\(kl[H ]"‘kz)

Where A/V is the FeS surface o1
area to total volume ratio

Arrhenius temperature plot j1> osf-

- min) x 10°

Kk, {cm/min)

k, {moles/cm?

3se 25° 20° 15* 100 e 08
: 1 Jo7
3.2 3.3 3.4 3.5 36
Pankow & Morgan, 1979 (1/T) x 10° K-
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Thermo vs Kinetics

Reaction of oxygen and nitrogen
N,+2+0,+H,0 < 2H" +2NO;

Thermodynamics tells us: ot {H ‘R ANO R,
Py, Po;

In the oceans, {H"} ,,~10, and {NO;}~0.26M

Then, considering p\,=0.70, we calculate:
Po, = 2.8x107"atm

But the real pg, is 0.21 atm

Why does thermo fail us here? the reaction is very slow.
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Reaction Kinetics

Irreversible reaction

IS one in which the reactant(s) proceed to product(s), but
there is no significant backward reaction,

In generalized for, irreversible reactions can be represented
as:

aA + bB = Products

l.e., the products do not recombine or change to form reactants in any
appreciable amount. An example of an irreversible reaction is hydrogen
and oxygen combining to form water in a combustion reaction. We do
not observe water spontaneously separating into hydrogen and oxygen.
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Reaction Kinetics: Reversibility

Areversible reaction

IS one in which the reactant(s) proceed to product(s),
but the product(s) react at an appreciable rate to
reform reactant(s).

aA+bB & pP +9Q
Most reactions must be considered reversible

An example of a reversible biological reaction is the formation of adenosine
triphosphate (ATP) and adenosine diphosphate (ADP). All living organisms
use ATP (or a similar compound) to store energy. As the ATP is used it is
converted to ADP, the organism then uses food to reconvert the ADP to

ATP.
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Extent of Reaction |

Has the reaction occurred if an so how close to completion is it?
Consider a generic reaction
aA+bB+....<> pP+09Q+....
Bringing the reactants to the products side, we get
—aA-bB-...+ pP+0gQ+....=0

And using the Greek, v, to equal the various stoichiometric

coefficients
" VAA+VEBH L+ VP +1r,Q ... =0

And the law of conservation of mass requires:

> VMW, =0
i MW =M =molecular weight
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Extent of Reaction Il

Mathematically defined as:

The change in #moles of a reactant or product as compared
to the starting amount divided by the stoichiometric
coefficient, v _ (n.—n.)

V.

And therefore: d_§: i ﬂ
dt (v, ) dt

And what we call the reaction rate is:

dé tljd(%) ( 1)d[ci] Where [c] is the

molar concentration
V.

a0 T
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Gibbs Energy and reaction extent

Stumm & Morgan

G Changes as reaction Fig. 2.5; Pg. 45
progresses due to changing SYSTEM
concentrations :
G reaches a minimum at the G
point of equilibrium
0 €, moles
.. dG + REACTION
do AG o .
CEE697K Lecture #1




Elementary Reactions

When reactant molecules
collide with the right
orientation and energy level

to form new bonds A+B — C+ D slw
Elementary reactions proceed 2C 5 E fast

in one step and directly :>
produce product with no

intermediates

A+D > C+F fo

Many “observable” reactions
are really just combinations

of elementary reactions > 20+-B > E+F

(multi-step reactions)
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Activated Complex
Species (AB*) S&M: Fig. 2.11

Pg.72

Cont.

lls

Lt
%
a Transition
T Ea Eo State
=
Ll
-l
<
=
Ll Reactant
'5 Species
Elementary T | (a+B) .

o Products
ELEMENTARY REACTION
reqchons A+B= AB¥— Products

A single step in a

: REACTION COORDINATE DISTANCE
reaction sequence
Involves 1 or 2 reactants and 1 or 2 products

Can be described by classical chemical kinetics

Law of mass action

# of reactant species in an elementary reaction is
call the molecularity
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Law of mass action

For elementary reactions, we can write the rate
expression directly from the stoichiometry

aA+bB — products

_ L AlA]L _1d[Al_, carrer
rate_vA i T a2 d K[A]*[B]

Reaction order

The rate constant, k,
Overall order: n=a+b

Order with respect to A=a, B=b, C=0.

is in units of ¢!t
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Elementary vs non-elementary |

T
o1 Base Hydrolysis of dichloromethane (DCM)

® Forms chloromethanol (CM) and chloride

Cl Cl

| |
H—(IJ—H + OH™ — H—C—H + CI

Cl OH
w Elementary reaction, therefore second order overall
(molecularity of 2)

= First order in each reactant, second order overall
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Elementary vs non-elementary I

The reaction of hydrogen and bromine

Hy + Bl — 2HBr

2(9 (9)

Sometimes used as an example of an elementary
reaction in old chemistry textbooks
Careful study has show the following kinetics

d[HBr]  k[Hy)l[Bryq, I
dt 14kl

[Bro(g)]

Thus it is not an elementary reaction!
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Elementary Reactions

24
1 Recall: Law of Mass Action )
=1 For elementary reactions
arb

C, = concentration of reactant species A, [moles/liter]

Cg = concentration of reactant species B, [moles/liter]

a = stoichiometric coefficient of species A

b = stoichiometric coefficient of species B

Kk = rate constant, [units are dependent on a and b]
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Simple Zero Order

25
1 Reactions of order de

N In reactant ¢ — = —kc"

= When n=0, we have

90 -
a simple zero-order 80 4
: c—pr
reaction g 07—* STl V7 kt
= 60 A
S 50
c P/ A
9 40 7 W
dc S 30 +—Slope
—=_k O 20 A
i © k=10mg/1/min .
0 I I I ]
0 20 40 60 80
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Presenter
Presentation Notes
This would be for a hypothetical non-elementary reaction where.



How do we describe the rate of  reaction?  Let’s say the rate is equal to the rate at which substance “A” drops in concentration:


[ J ) k
Simple first order A—— products
_ 26|
7 When n=1, we dc c
have a simple dt A
first-order 90 -
i 80 4
reaction o =
- _ Kt
1 This results in an -% 60 & CA — CAOe
“exponential =t N
7 o 40
decay 2 R
@
O 20 A
A
10 A A
0 | | |
0 20 40 60
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First order (cont.)

.
C
. . —2 =—kc,
-1 This equation can dt
be linearized 100 -
A
1 good for ~

assessment of “k’
from data

=
o

Concentration (log scale)
Y4
/e

/>
O
>
|
>
O
>
o
|
>
—+

o
N
o
N
o
o
o

80
Time (min)
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Simple Second Order

2 A—*2 5 products

1 dc,
v, dt

2
— _kch

® When n=2, we have a simple second-order

reaction

01 This results in an
especially wide
range in rates

1 More typical to
have 2" order
in each of two
different
reactants

Concentration

90 -
80 A
\

70
60 \

\
50 N

40
30
20
10 A

0 | | |

0 20 40 60 80

—,
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Presenter
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Simple Second Order (cont.)
N

1 Again, the equation can be linearizedto 1 dc,

o (11 k) __kzci
estimate “k” from data v, dt
Time (min)
0 20 40 60 80
1 1 I . . .
= — 12kt 012
Ca Cho c 0.1 A
O A |
< 0.08
: R
c
8 0.06 /A Sloge
G 0.04 A
S . 2,=00015L/mg/min
= 0.02

A
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Comparison of Reaction Orders

Curvature as order changes: 2">15>zero

Concentration

90
80 & Zero Order
70 \\
\ A
60 \ (] N
50 \ w
40 +——5—-

e

30

T
A [] \
20 T ——
10 ‘\“1\\\Q
O | | | ]
0 20 40 60 80
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Presenter
Presentation Notes
Order does not equate to rate
Instead it pertains to how that rate changes with a change in concentration




Variable Kinetic Order

Any reaction order, except n=1

E:—k c’

dt " 1 1

h+n 1k ¢t [ (-0
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Half-lives
=N

o Time required for initial concentration to drop to
half, i.e.., c=0.5¢c_

=1 For a zero order reaction:

71 For a first order reaction:
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Example: Benzyl Chloride

Use:

Manufacture of benzyl compounds, perfumes,
pharmaceduticals, dyes, resins, floor tiles

Toxicity

Intensely irritating to skin, eyes, large doses can cause
CNS depression

Emission
45,000 Ib/yr

Fate

Benzyl chloride undergoes slow degradation in water to
benzyl alcohol
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Sources:
*Schwarzenbach et al., 1993, Env. Organic Chemistry

*1972, J. Chem.Soc. Chem. Comm. 425-6

B e nzy I C h I O ri d e I I *1967, Acta Chem. Scand. 21:397-407

*1961, J. Chem. Soc. 1596-1604

(a) 10
A PH 3
: 25°C oPH 2
Benzyl chloride to benzyl alcohol pH o
CH,CI H,0 CH,OH :"% | @,CH2CI
F\v> ©/ ﬁ DQ\
- dﬁ\%\
Nucleophilic substitution N T .
d[ A] 0 10 20 30 40 50 60
SN] or SN2? —:—k[A] time (h)
(jt (&) 0

How to distinguish?

_ 2.
Salt effects il ln2| *‘62 k= B

= t, \a
= \Q\
0.1°C 25°C = 3
CHQC[
K  0.042x105s!  1.38x10°3s! 4k O
T]/2 ]9.] d 058 d ——__._.. Lecture # 0 16 QIO 36 4|O 510 6[0



O To next lecture
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