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Kinetics 

 Examples 
 Fe+2 oxidation by O2 
 almost instantaneous at high pH 
 quite slow at low pH 
 high D.O. may help 

 Oxidation of organic material 
 Formation of solid phases 
 Aluminum hydroxide 
Quartz sand 



Utility of Kinetics 
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 Empirical Analysis 
 Moderate Rate 

 Estimate reaction time (characteristic time) for; 
 Engineered systems (size of tanks) 
 Natural Aquatic Systems (WQ modeling) 
 Atmospheric systems (air pollution modeling) 

 Fast Rates 
 Evaluate simple competitive kinetics 

 Determine complex reaction stoichiometries 
 Define complex or cyclic reaction webs 

 Postulate major pathways 

 Slow Rates 
 Reaction time for global processes 

 Human impacts 

 Theoretical Analysis 
 All Rates: understand mechanisms 

 Predict other reaction kinetics 
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Chemistry and Environmental Engineering 

Environmental 
Engineering 

Math 

Biology Physics 

Chemistry 



Engineered & Natural Systems 
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 Kinetics is the source of reactions and rates 

Process 
Design 
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Modeling 

Aquatic 
Chemistry 

Env. Micro 

Surface 
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Biological 
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Physico-
chemical 
Processes 

Transport 

Reactions 
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Relation with other Chemistry Disciplines 

Chemistry 

Physical 
Chemistry 

Kinetics Thermodynamics 

Analytical 
Chemistry 

 
680 

Inorganic 
Chemistry 

Organic 
Chemistry 

697K 

 With water chemistry, A cornerstone of the good grad 
programs in our field 



Time Scales & Kinetics 
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Engineered Systems 



Time and Length scales 
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Sulfur in lakes I 
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 Forms 
 Gas: H2S, SO2 
 Liquid SO4

-2, HS-, Amino acids with S 
 Solids: MeSx, pyrites (FeS2), elemental S 

 Mass Transfer 
 Air:water 
 Sediment:water 

 Reactions 
 Chemical: oxidation, reduction, precipitation, complexation, 

hydrolysis 
 Biological: biosynthesis, use as TEA, release 

Methionine 
 

Cysteine 

http://en.wikipedia.org/wiki/File:Methionin_-_Methionine.svg
http://en.wikipedia.org/wiki/File:Cysteine.png


Sulfur in Lakes II 

David A. Reckhow CEE 670 Kinetics Lecture #1 

10 

 Brezonik; example 1-2 
 Sulfur cycling depends on biotic  

& abiotic redox kinetics, precip, 
dissolution, complexation, etc. 

Observed in-lake 
loss of sulfate by 
microbial sulfate 
reduction Monod kinetics 

from lab 
cultures 



Sulfur in lakes (cont.) 
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 Typical sulfate depth profile 
around sediment water interface 
 
 

 Kinetics of abiotic oxidation of 
sulfide species 

HS- 
S-2 



Sulfur in lakes (cont.) 
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 Mackinawite (FeS) 
 Forms in reduced sediments 
 Dissolves by first order rate, 

also catalyzed by low pH 
 
 
Where A/V is the FeS surface 

area to total volume ratio 

 Arrhenius temperature plot 

( )21 ][][ kHk
V
A

dt
Sd tot += +

Pankow & Morgan, 1979 
[ES&T, 13(10)1248] 



Thermo vs Kinetics 
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 Reaction of oxygen and nitrogen 
 
 Thermodynamics tells us: 

 
 In the oceans, {H+}aq~10-8, and {NO3

-}~0.26M 
 Then, considering pN2=0.70, we calculate: 

 
 But the real pO2 is 0.21 atm 
Why does thermo fail us here?  the reaction is very slow. 
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 Irreversible reaction 
 is one in which the reactant(s) proceed to product(s), but 

there is no significant backward reaction, 
 In generalized for, irreversible reactions can be represented 

as: 
  aA + bB ⇒ Products 
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Reaction Kinetics 

i.e., the products do not recombine or change to form reactants in any 
appreciable amount.  An example of an irreversible reaction is hydrogen 
and oxygen combining to form water in a combustion reaction.  We do 
not observe water spontaneously separating into hydrogen and oxygen.  
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Reaction Kinetics: Reversibility 

An example of a reversible biological reaction is the formation of adenosine 
triphosphate (ATP) and adenosine diphosphate (ADP).  All living organisms 
use ATP (or a similar compound) to store energy.  As the ATP is used it is 
converted to ADP, the organism then uses food to reconvert the ADP to 
ATP. 

 A reversible reaction 
 is one in which the reactant(s) proceed to product(s), 

but the product(s) react at an appreciable rate to 
reform reactant(s). 

 aA + bB ↔ pP + qQ 
 Most reactions must be considered reversible 



Extent of Reaction I 
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 Has the reaction occurred if an so how close to completion is it? 
 Consider a generic reaction 

 
 Bringing the reactants to the products side, we get 

 

 And using the Greek, ν, to equal the various stoichiometric 
coefficients, 
 

 And the law of conservation of mass requires: 

........ ++↔++ qQpPbBaA

0........ =+++−−− qQpPbBaA

0........ =+++++ QPBA QPBA νννν

0=∑
i

iiMWν
MW ≡ M ≡ molecular weight 



Extent of Reaction II 
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 Mathematically defined as: 
 The change in #moles of a reactant or product as compared 

to the starting amount divided by the stoichiometric 
coefficient, ν 
 

 And therefore: 
 

 And what we call the reaction rate is: 
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Gibbs Energy and reaction extent 

 G Changes as reaction 
progresses due to changing 
concentrations 

 G reaches a minimum at the 
point of equilibrium 

Stumm & Morgan 
Fig. 2.5; Pg. 45 

ξd
dGG ≡∆

Extent of reaction 
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Elementary Reactions 

 When reactant molecules 
collide with the right 
orientation and energy level 
to form new bonds 

 Elementary reactions proceed 
in one step and directly 
produce product with no 
intermediates 

 Many “observable” reactions 
are really just combinations 
of elementary reactions 
(multi-step reactions) 

FEBA

FCDA
EC

DCBA

+→+

+→+
→

+→+

2

2 fast 

slow 

fast 

Starting out with some A and B, we 
observe that E and F are the end 
products 
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Cont. 

 Elementary 
 reactions 
 A single step in a 

 reaction sequence 
 Involves 1 or 2 reactants and 1 or 2 products 
 Can be described by classical chemical kinetics 
 Law of mass action 

 # of reactant species in an elementary reaction is 
call the molecularity 

S&M: Fig. 2.11 
Pg. 72 



Law of mass action 
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 For elementary reactions, we can write the rate 
expression directly from the stoichiometry 
 
 
 

 Reaction order 
 Overall order: n=a+b 
 Order with respect to A=a, B=b, C=0. 

productsbBaA →+

ba

A

BAk
dt
Ad

adt
Adrate ][][][1][1

=−≡≡
ν

The rate constant, k, 
is in units of c1-nt-1 
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Elementary vs non-elementary I 

 Base Hydrolysis of dichloromethane (DCM) 
 Forms chloromethanol (CM) and chloride 

 
 
 

 Elementary reaction, therefore second order overall 
(molecularity of 2) 
 
 
 
 First order in each reactant, second order overall 

dt
Cld

dt
CMd

dt
OHd

dt
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Elementary vs non-elementary II 
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 The reaction of hydrogen and bromine 
 
 Sometimes used as an example of an elementary 

reaction in old chemistry textbooks 
 Careful study has show the following kinetics 

 
 

 Thus it is not an elementary reaction! 

)()(2)(2 2 ggg HBrBrH →+

][
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5.0
)(2)(2

)(2
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Elementary Reactions 

where, 
CA = concentration of reactant species A, [moles/liter] 
CB = concentration of reactant species B, [moles/liter] 
a = stoichiometric coefficient of species A 
 
b = stoichiometric coefficient of species B 
k = rate constant, [units are dependent on a and b] 

 Recall: Law of Mass Action 
 For elementary reactions 

productsbBaA k→+
b
B

a
ACkCrate =
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Simple Zero Order 

 Reactions of order 
“n” in reactant “c” 
 

 When n=0, we have 
a simple zero-order 
reaction 

dc
dt

kcn= −

dc
dt

k= −

c c kto= −

k mg l= 10 / / min

Slope 

Presenter
Presentation Notes
This would be for a hypothetical non-elementary reaction where.



How do we describe the rate of  reaction?  Let’s say the rate is equal to the rate at which substance “A” drops in concentration:
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Simple first order 

 When n=1, we 
have a simple 
first-order 
reaction 

 This results in an 
“exponential 
decay” 

Akc
dt
dc

−=

kt
AoA ecc −=

k = −0 032 1. min

productsA k→

Presenter
Presentation Notes
This would be for a hypothetical elementary reaction where.
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First order (cont.) 

 This equation can 
be linearized 

 good for 
assessment of “k” 
from data 

A
A kc

dt
dc

−=

10
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ktcc AoA −= lnln

k = −0 032 1. min

Slope 

Presenter
Presentation Notes
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Simple Second Order 

 This results in an 
especially wide 
range in rates 

 More typical to 
have 2nd order 
in each of two 
different 
reactants 

2
2

1
A

A

A

ck
dt

dc
−=

ν

tck
cc

Ao
AoA

221
1

+
=

min//0015.02 mgLk =

When n=2, we have a simple second-order 
reaction 

productsA k→ 22

Presenter
Presentation Notes
This would be for a hypothetical elementary reaction where.
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Simple Second Order (cont.) 

 Again, the equation can be linearized to 
estimate “k” from data 

2
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Comparison of Reaction Orders 

 Curvature as order changes: 2nd>1st>zero 
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Presenter
Presentation Notes
Order does not equate to rate
Instead it pertains to how that rate changes with a change in concentration
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Variable Kinetic Order 

 Any reaction order, except n=1 

n
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dc
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Half-lives 

 Time required for initial concentration to drop to 
half, i.e.., c=0.5co 
 For a zero order reaction: 

 
 

 For a first order reaction: 

c c kto= −
2

15.0 ktcc oo −= k
ct o5.0

2
1 =

c c eo
kt= − 2

15.0
kt

oo ecc
−

=

k

k
t

693.0

)2ln(
2

1

=
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Example: Benzyl Chloride 

David A. Reckhow CEE690K  Lecture #2 

33 

 Use: 
 Manufacture of benzyl compounds, perfumes, 

pharmaceuticals, dyes, resins, floor tiles 
 Toxicity 

 Intensely irritating to skin, eyes, large doses can cause 
CNS depression 

 Emission 
 45,000 lb/yr 

 Fate 
 Benzyl chloride undergoes slow degradation in water to 

benzyl alcohol 
 



Benzyl chloride II 
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25ºC 

Sources: 
•Schwarzenbach et al., 1993, Env. Organic Chemistry 
•1972, J. Chem.Soc. Chem. Comm.  425-6 
•1967, Acta Chem. Scand. 21:397-407 
•1961, J. Chem. Soc. 1596-1604 

][][ Ak
dt
Ad

−=

 Benzyl chloride to benzyl alcohol 
 
 
 Nucleophilic substitution 
 SN1 or SN2? 

 How to distinguish? 
 Salt effects 

CH2Cl CH2OHH2O

HCl

Temperature 

0.1ºC 25ºC 

K 0.042x10-5 s-1 1.38x10-5s-1 

T1/2 19.1 d 0.58 d 
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 To next lecture 

http://www.ecs.umass.edu/cee/reckhow/courses/ERK/slides/ERKl02.pdf
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