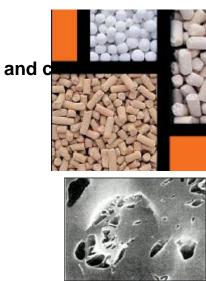
CEE 772: Instrumental Methods in Environmental Analysis Lecture #24

Special Applications: Chromatographic Retention Time and Environmental Properties (Skoog, nothing)

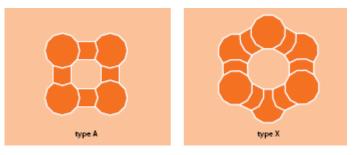

(Harris, Nothing) () Stationary Phases:

Stationary phase in GC is the main factor determining the selectivity and retention of solutes.

There are three types of stationary phases used in GC: Solid adsorbents Liquids coated on solid supports Bonded-phase supports

1.) Gas-solid chromatography (GSC)

- same material is used as both the stationary phase and support material
- common adsorbents include:



- ② alumina
- ② molecular sieves

② silica

② active carbon

(crystalline aluminosilicates [zeolites]

Magnified Pores in activated carbon

2.) Gas-liquid chromatography (GLC)

- stationary phase is some liquid coated on a solid support
- over 400 liquid stationary phases available for GLC

2 many stationary phases are very similar in terms of their retention properties

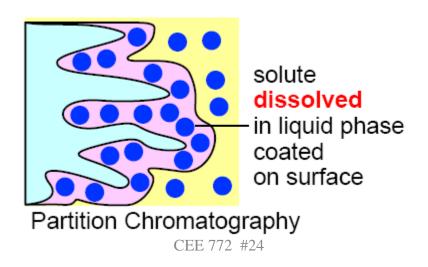
- material range from polymers (polysiloxanes, polyesters, polyethylene glycols) to fluorocarbons, molten salts and liquid crystals

Based on polarity, of the 400 phases available only 6-12 are needed for most separations. The routinely recommended phases are listed below:

	Chemical nature of	Max.	McReynolds' constants				
Name	polysiloxane	temp.	х'	у'	Z'	μ'	s'
SE-30	Dimethyl	350	14	53	44	64	41
Dexsil300	Carborane-dimethyl	450	43	64	111	151	101
OV-17	50% Phenyl methyl	375	119	158	162	243	202
OV-210	50% Trifluoropropyl	270	146	238	358	468	310
OV-225	25% Cyanopropyl- 25% phenyl	250	238	369	338	492	386
Silar-SCP	50% Cyanopropyl- 50% phenyl	275	319	495	446	637	531
SP-2340	75% Cyanopropyl	275	520	757	659	942	804
OV-275	Dicyanoallyl	250	629	872	763	1106	849

Higher the number the higher the absorption.

McReynolds' constants based on retention of 5 standard "probe" analytes


- Benzene, n-butanol, 2-pentanone, nitropropanone, pyridine

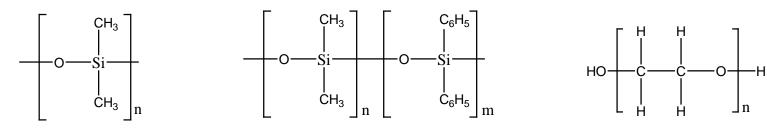
Preparing a stationary phase for GLC:

- slurry of the desired liquid phase and solvent is made with a solid support
 - solid support is usually diatomaceous earth (fossilized shells of ancient aquatic algae (diatoms), silica-based material)
- solvent is evaporated off, coating the liquid stationary phase on the support
- the resulting material is then packed into the column

disadvantage:

- liquid may slowly bleed off with time
 - ② especially if high temperatures are used
 - ② contribute to background
 - ② change characteristics of the column with time

3.) Bonded-Phase Gas chromatography


- covalently attach stationary phase to the solid support material
- avoids column bleeding in GLC
- bonded phases are prepared by reacting the desired phase with the surface of a silicabased support

reactions form an Si-O-Si bond between the stationary phase and support

or

reactions form an Si-C-C-Si bond between the stationary phase and support

- many bonded phases exist, but most separations can be formed with the following commonly recommended bonded-phases:
 - ② Dimethylpolysiloxane
 - ② Methyl(phenyl)polysiloxane
 - ② Polyethylene glycol (Carbowax 20M)
 - ② Trifluoropropylpolysiloxane
 - ② Cyanopropylpolysiloxane

advantages:

- more stable than coated liquid phases
- can be placed on support with thinner and more uniform thickness than $_5$ liquid phases

B. retention and capacity factor: $t_R = t_M(1+k)$

1. Modern methods: solute effects (Kamlet, Taft, and Abraham)

$$\log \mathbf{k} = \mathbf{c} + \mathbf{r} \mathbf{R}_2 + \mathbf{s} \mathbf{\pi}_2^{\mathsf{H}} + \mathbf{a} \mathbf{\Sigma} \alpha_2^{\mathsf{H}} + \mathbf{b} \mathbf{\Sigma} \beta_2^{\mathsf{H}} + \mathbf{log}_{\mathsf{L}}^{16} \quad (\text{Gas chromatography})$$

Solute descriptors (R₂, π_2 , $\Sigma \alpha_2$, $\Sigma \beta_2$, logL¹⁶ and V_x): depended on solute properties **Kamlet-Taft parameters**

System constants (*c, m, r, s, a, b,* and *l*): depended on chromatographic system conditions: mobile phase, stationary phase, and temperature.

2. Kovat's Retention Index

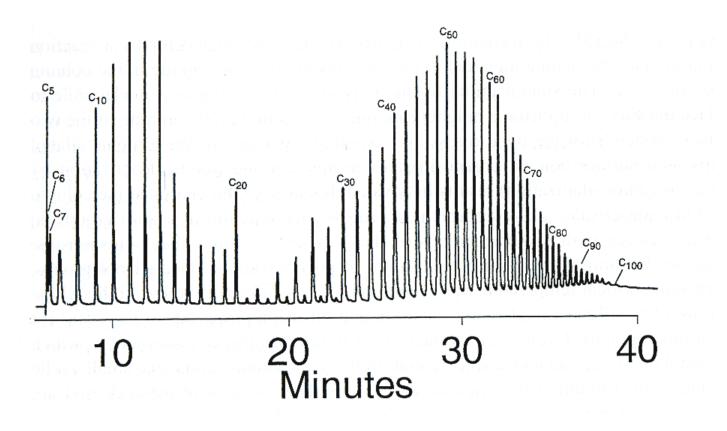
 $I = 100z + 100^{(logt_{R}'(x)-logt_{R}'(z))/[logt_{R}'(z+1)-logt_{R}'(z)]$

Where t_R' is the adjusted retention time, z the carbon number of the n-alkane eluting immediately before the substance of interest denoted by x, and z+1 the retention number of the n-alkane eluting immediately after substance x.

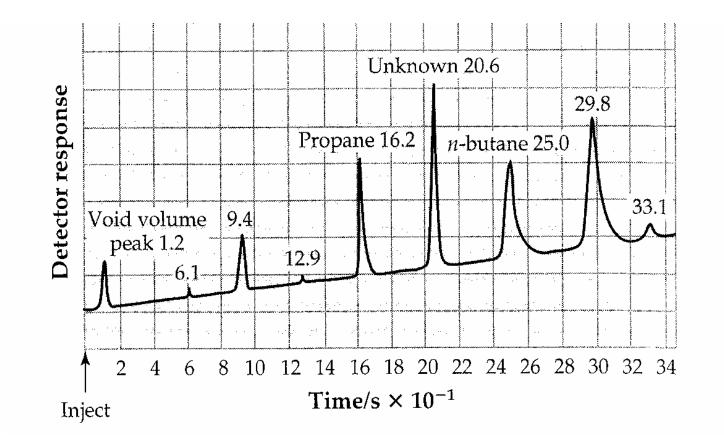
Retention Index (Kovats)

Based on n-alkanes

$$I = 100 \left[n + \frac{\log t'_{NX} - \log t'_{Nn}}{\log t'_{N(n+1)} - \log t'_{Nn}} \right]$$


where:

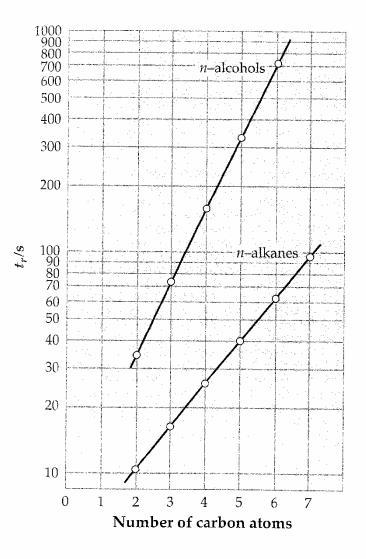
 t'_{N} = Net retention time = $t_{r} - t_{0}$


and the analyte elutes between C_n and C_{n+1}

CEE 772 #24

Kovat's approach is using retention of n-alkanes as standards to Index the retention of substance of interest on a certain chromatographic system.

 $I = 100z + 100^{(logt_{R}'(x)-logt_{R}'(z))/[logt_{R}'(z+1)-logt_{R}'(z)]$



$$I_{unk} = 100 \left[3 + \frac{\log(20.6 - 1.2) - \log(16.2 - 1.2)}{\log(25.0 - 1.2) - \log(16.2 - 1.2)} \right]$$

 $I_{unk} = 356$

CEE 772 #24

Retention Index (Kovats)

Based on the log-linear relationship between number of carbons (n) in an n-alkane and retention time.

3. McReynolds' phase constants

McReynold's phase constants

$$\Delta I = aX' + bY' + cZ' + dU' + eS'$$

Phase constant: X': Benzene; Y': 1-butanol; Z': 2-pentanone; U': 1nitropropane; S': Pyridine

a, b, c, d, e, constants for the solute of interest.

Retention Index (McReynolds Constant)

Reports ∆I for a specific stationary phase (squalane), and 5 different reference compounds: benzene, n-butanol, 2- pentanone, nitropropane, pyridine

 $\Delta \mathbf{I} = \mathbf{I}_{\rm sp} - \mathbf{I}_{\rm squalane.}$

From a table of stationary phase ΔI values, one may choose the biggest ΔI value for the reference compound most like the solute of interest.

McReynolds Constants: Example

- Example:
 - Kovats index of toluene:
 - 773 on SP squalene (non-polar)
 - 860 on SP dioctylphatalate
 - Define McReynolds constant as:
 - $\Delta I = 860 773 = 87$
 - Results:
 - Dioctylphatalate is a more polar stationary phase
 - The larger the McReynolds constant, the greater the retention time than compared to the non-polar column.

Method by McReynolds

McReynold's phase constants

$$\Delta I = aX' + bY' + cZ' + dU' + eS'$$

Phase constant: X': Benzene; Y': 1-butanol; Z': 2-pentanone; U': 1nitropropane; S': Pyridine

a, b, c, d, e, constants for the solute of interest.

Method by Kamlet, Taft, and Abraham

 $\log \mathbf{k} = \mathbf{c} + \mathbf{r} \mathbf{R}_2 + \mathbf{s} \mathbf{\pi}_2^{\mathsf{H}} + \mathbf{a} \mathbf{\Sigma} \alpha_2^{\mathsf{H}} + \mathbf{b} \mathbf{\Sigma} \beta_2^{\mathsf{H}} + \mathbf{log} \mathbf{L}^{\mathsf{16}} \quad (\text{Gas chromatography})$

Solute descriptors (R₂, π_2 , $\Sigma \alpha_2$, $\Sigma \beta_2$, $\log L^{16}$, and V_x): depended on solute properties **Kamlet-Taft parameters**

System constants (*c, m, r, s, a, b,* and *l*): depended on chromatographic system conditions: mobile phase, stationary phase, and temperature.

McReynolds Constants

From McNair

TABLE 4.4 McReynolds Constants and Temperature Limits for Some Common Stationary Phases

Probes* Temp. Limits Sum of ΔI Stationary Phase Alc Ket N-Pr Pyrid Lower Upper Benz Squalane Apolane 87® OV-18 OV-101® Dexsil 300® OV-17® Tricresylphosphate OF-1 OV-202* and OV-210* OV-2250 Carbowax 20M® DEGS OV-275®

Each sum is a measure of the "polarity" of the liquid phase. The higher the sum, the higher the polarity, the higher the retention time.

Comparison to the method by Kamlet, Taft, and Abraham

Table 2.15

Prototypical solutes used by McReynolds (Rorschneider solutes in parentheses) to characterize stationary phase properties

 R_2 = excess refraction, π_2^H = dipolarity/polarizability, $\Sigma \alpha_2^H$ hydrogen-bond acidity, $\Sigma \beta_2^H$ = hydrogen-bond basicity and log L¹⁶ partition coefficient on hexadecane at 25°C.

Symbol	Solute	Solute des	Solute descriptors					
adobu io non	n haan too too shirana	R_2	$\pi_2^{\rm H}$	$\Sigma \alpha_2^{\rm H}$	$\Sigma \beta_2^{H}$	log L ¹⁶		
Χ′	Benzene	0.610	0.52	0	0.14	2.786		
\mathbf{Y}'	1-Butanol	0.224	0.42	0.37	0.48	2.601		
	(Ethanol)							
Ζ′	2-Pentanone	0.143	0.68	0	0.51	2.143		
	(2-Butanone)							
U'	1-Nitropropane	0.242	0.95	0	0.27	2.894		
	(Nitromethane)							
S'	Pyridine	0.631	0.84	0	0.52	3.022		
H'	2-Methyl-2-pentanol	0.180	0.30	0.31	0.60	1.963		
J'	Iodobutane	0.628	0.40	0	0.15	3.628		
Κ'	2-Octyne	0.225	0.30	0	0.10	3.850		
L'	Dioxane	0.329	0.75	0	0.64	2.892		
M′	cis-Hydrindane	0.439	0.25	0	0	4.635		

noitailean

Idea is same: use constants from systems and solute to describe retention

Difference: Kamlet et al use solvatochromic parameters to index the constant of solute of interest.

McReynolds uses properties of specific molecules to index constant of solute of interest.

Journal of Chromatography A, 1317 (2013) 85-104

Contents lists available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

Review

Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model

Colin F. Poole*, Thiloka C. Ariyasena, Nicole Lenca

Department of Chemistry, Wayne State University, Detroit, MI 48202, USA

ARTICLE INFO

Article history: Available online 27 May 2013

Keywords: Solvation parameter model Gas chromatography Liquid chromatography Micellar electrokinetic chromatography Environmental properties Quantitative retention-property relationships

ABSTRACT

This article provides an overview of chromatographic methods as surrogate models for environmental processes and for the determination of descriptors for compounds of environmental interest. The solvation parameter model is the link to the identification of suitable chromatographic models for the estimation of environmental properties using a set of tools that allow screening of chromatographic databases for the selection of candidate systems. As an alternative approach, many transport and distribution properties of environmental interest can be described directly by the solvation parameter model. Environmental properties for compounds with known descriptors can then be predicted through these models. The central role chromatographic methods, together with liquid–liquid partition coefficients, occupy in the determination of the six descriptors used in the solvation parameter model is detailed. There is a current need to accelerate efforts to expand the coverage of environmental process models by incorporating more complex molecules of contemporary environmental interest. For many of these molecules descriptor values are unavailable and their determination should be prioritized.

© 2013 Elsevier B.V. All rights reserved.

Standard model

- Log SP = c + eE + sS + aA + bB + IL
 - Where
 - SP = solute property
 - L = gas-hexadecane partition coefficient
 - Cavity formation and solute-solvent dispersion interactions
 - E = excess molar refraction descriptor
 - A, B = hydrogen bonding acidity and basicity descriptors

Table 1

System constants for the poly(methyloctylsiloxane) stationary phase SPB-Octyl as a function of temperature.

Temperature (°C)	System constants						
	е	S	а	b	l		
60	0.092	0.091	0.062	0	0.786		
80	0.118	0.083	0	0	0.710		
100	0.135	0.078	0	0	0.648		
120	0.154	0.069	0	0	0.580		
140	0.168	0.063	0	0	0.544		
160	0.176	0.055	0	0	0.431		
180	0.185	0.054	0	0	0.389		
200	0.190	0.047	0	0	0.350		
220	0.190	0.047	0	0	0.325		
240	0.198	0.044	0	0	0.289		
260	0.200	0.043	0	0	0.263		

Available online at www.sciencedirect.com

SCIENCE dDIRECT.

Journal of Chromatography B, 797 (2003) 3-19

JOURNAL OF CHROMATOGRAPHY B

www.elsevier.com/locate/chromb

Review

Separation methods for estimating octanol-water partition coefficients

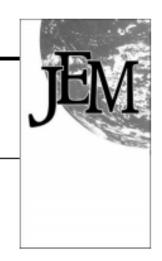
Salwa K. Poole^{a,*}, Colin F. Poole^b

^a Discovery Technologies, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
^b Department of Chemistry, Wayne State University, Detroit, MI 48202, USA

Abstract

Separation methods for the indirect estimation of the octanol-water partition coefficient (log P) are reviewed with an emphasis on high throughput methods with a wide application range. The solvation parameter model is used to identify suitable separation systems for estimating log P in an efficient manner that negates the need for empirical trial and error experiments. With a few exceptions, systems based on reversed-phase chromatography employing chemically bonded phases are shown to be unsuitable for estimating log P for compounds of diverse structure. This is because the fundamental properties responsible for chromatographic retention tend to be different to those responsible for partition between octanol and water, especially the contribution from hydrogen bonding interactions. On the other hand, retention in several micellar and microemulsion electrokinetic chromatography systems is shown to be highly correlated with the octanol-water partition coefficient. These systems are suitable for the rapid, high throughput determination of log P for neutral, weakly acidic, and weakly basic compounds. For compounds with a permanent charge, electrophoretic migration and electrostatic interactions with the stationary phase results in inaccurate estimation of partition coefficients. The experimental determination of solute descriptors offers an alternative approach for estimating log P, and other biopartitioning properties. A distinct advantage of this approach is that once the solute descriptors are known, solute properties can be estimated for any distribution or transport system for which a solvation parameter model has been established. © 2003 Elsevier B.V. All rights reserved.

Keywords: Reviews; Octanol-water partition coefficient


The determination of air/water partition coefficients for alkyl carboxylic acids by a new indirect method

Michael H. Abraham

Department of Chemistry, University College London, 20 Gordon Street, London, UK WC1H OAJ. E-mail: m.h.abraham@ucl.ac.uk

Received 17th July 2003, Accepted 15th August 2003 First published as an Advance Article on the web 1st September 2003

The air/water partition coefficients of carboxylic acids, K_w , especially those of high molecular weight, are very difficult to determine directly. Values of K_w can be obtained by an indirect method as $K_w = K/P$ where K is an air/solvent partition coefficient and P is the corresponding water/solvent partition coefficient. In the present method, gas-liquid chromatographic data and water/solvent partition data are used to obtain 'descriptors' of carboxylic acids that can then be used to determine the required K, P, and thus K_w values. These are reported for all the 24 n-alkyl carboxylic acids from formic acid to n-tetracosanoic acid, and for seven branched chain alkyl carboxylic acids. There is good agreement with literature values of K_w , where available, although the present data on the n-alkyl carboxylic acids is much more self consistent than the literature data.

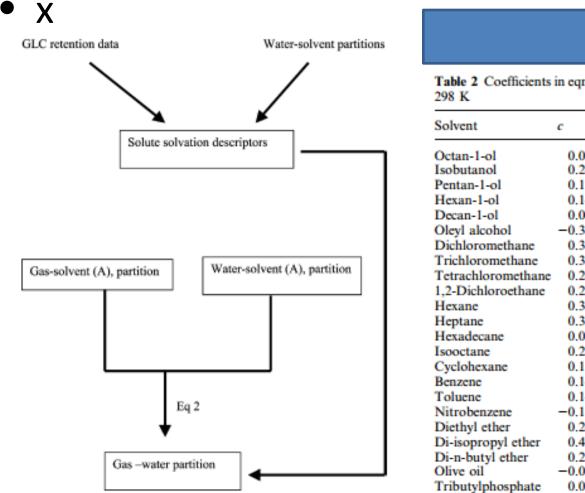


Fig. 2 Outline of the indirect method.

Table 2 Coefficients in eqn.	(3) for water/solvent partitions, as log P, at
298 K	

Solvent	с	е	5	a	b	v
Octan-1-ol	0.088	0.562	-1.054	0.034	-3.460	3.814
Isobutanol	0.249	0.480	-0.639	-0.050	-2.284	2.758
Pentan-1-ol	0.175	0.575	-0.787	0.020	-2.837	3.249
Hexan-1-ol	0.143	0.718	-0.980	0.145	-3.214	3.403
Decan-1-ol	0.008	0.485	-0.974	0.015	-3.798	3.945
Oleyl alcohol	-0.359	-0.270	-0.528	-0.035	-4.042	4.204
Dichloromethane	0.314	0.001	0.022	-3.238	-4.137	4.259
Trichloromethane	0.327	0.157	-0.391	-3.191	-3.437	4.191
Tetrachloromethane	0.260	0.573	-1.254	-3.558	-4.588	4.589
1,2-Dichloroethane	0.227	0.278	-0.167	-2.816	-4.324	4.205
Hexane	0.361	0.579	-1.723	-3.599	-4.764	4.344
Heptane	0.325	0.670	-2.061	-3.317	-4.733	4.543
Hexadecane	0.087	0.667	-1.617	-3.587	-4.869	4.433
Isooctane	0.288	0.382	-1.668	-3.639	-5.000	4.561
Cyclohexane	0.159	0.784	-1.678	-3.740	-4.929	4.577
Benzene	0.142	0.464	-0.588	-3.099	-4.625	4.491
Toluene	0.143	0.527	-0.720	-3.010	-4.824	4.545
Nitrobenzene	-0.181	0.576	0.003	-2.356	-4.420	4.263
Diethyl ether	0.248	0.561	-1.016	-0.226	-4.55	4.075
Di-isopropyl ether	0.476	0.434	-0.939	-0.555	-5.185	4.189
Di-n-butyl ether	0.252				-5.249	
Olive oil	-0.011		-0.800	-1.470		4.173
Tributylphosphate	0.015	0.804	-0.862	1.389	-4.647	4.129
Gas phase	-0.994	0.577	2.549	3.813	4.841	-0.869

• Last lecture

Retention Index (Rohrschnieder Constant)

Reports ΔI for different test solutes

 $\Delta \mathbf{I} = \mathbf{I}_{\rm sp} - \mathbf{I}_{\rm non-polar \ s.p.}$

From a table of ΔI values, one may choose the best stationary phase (s.p.) for a given class of solutes

Rules for Retention Index

- 1. R.I. increases 100 points for every CH₂ group in a molecule
- 2. ΔI for 2 isomers can be calculated from boiling points: $\Delta I \approx 5 \Delta bp$
- 3. R.I. for non-polar compounds is constant for any stationary phase.
- 4. R.I. for ANY compound is constant for ALL non-polar stationary phases.
- 5. ΔI for a solute between a polar and a non-polar stationary phase is a characteristic of the solute and can be predicted.

Kovats Retention Indices of Selected Hydrocarbons through C₁₀ on Bonded Phase Fused Silica Capillaries

A. J. Lubeck* and D. L. Sutton

Marathon Oil Company, Denver Research Center, P. O. Box 269, Littleton, Colorado 80160, USA

Description of fused silica columns tested.

	Α	В	С	D	E
Source ^{a)}	J & W	H~P	J & W	J&W	J&W
Туре ^{b)}	DB-1	PONA	DB-1	DB-5	DB-5
Film thickness [µm] .	0.25	0.5	1.0	0.25	1.0
Column ID [mm]	0.264	0.21	0.259	0.252	0.259
Column length [m]	60	50	60	60	60

DB-5 slightly more polar than **DB-1**

C thickness > A E thickness > D

CEE 772 #24