Print version # **Gas Chromatography** Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 1 #### **Contents** - The primary components to a GC system - 1. Carrier Gas System (including Gas Clean Filters) - The concept of theoretical plates and van Deemter curves - Selection of proper carrier gas - 2. Sample Introduction System - Split & splitless injection - 3. Column (most critical component) - Column configurations: packed vs. open tubular/capillary - Stationary phase - 4. Detection System/GC Detectors - Types of detectors and their specific applications - 5. Computer ChemStation/Integrator CEE 772 #16 #### **Contents** - The primary components to a GC system - 1. Carrier Gas System (including Gas Clean Filters) - The concept of theoretical plates and van Deemter curves - Selection of proper carrier gas - 2. Sample Introduction System - Split & splitless injection - 3. Column (most critical component) - Column configurations: packed vs. open tubular/capillary - Stationary phase - 4. Detection System/GC Detectors - Types of detectors and their specific applications - 5. Computer ChemStation/Integrator CEE 772 #16 #### **Gas Clean Filter** - Significant damages can be done to the column if it is heated above 70°C with even trace amounts of O₂ in the column - Use carrier gas that meets the 99.9995% specification (UHP grade) - Use O₂ & moisture traps CEE 772 #16 #### **Contents** - The primary components to a GC system - 1. Carrier Gas System (including Gas Clean Filters) - The concept of theoretical plates and van Deemter curves - Selection of proper carrier gas - 2. Sample Introduction System - Split & splitless injection - 3. Column (most critical component) - Column configurations: packed vs. open tubular/capillary - Stationary phase - 4. Detection System/GC Detectors - Types of detectors and their specific applications - 5. Computer ChemStation/Integrator CEE 772 #16 # **II. Sample Introduction** The sample must be of a suitable size (especially for WCOT/capillary columns) and introduced instantaneously as a PLUG OF VAPOR Slow injection/oversize causes peak broadening and poor resolution # **Split vs. Splitless Injection** #### Splitless injection For example, a liquid sample is injected into the port, it is quickly volatilized at the end of the microsyringe and at the head of the column; the solutes are then taken by the carrier gas into the column #### Split injection Open tubular/capillary columns usually have a much smaller crosssection area than that of packed columns. This makes them more subject to extra-column band-broadening, requiring that special low volume injection techniques be used with them. # * Cold On-Column Injector - Cold on-column injectors involves direct injection of a sample onto a column at low temperature. - No heated injection port is used. The low initial column temperature increases the retention of all solutes and concentrates them at the top of the column in a narrow plug. The column temperature is then increased, allowing the solutes to volatilize and be separated. CEE 772 #1gore 3.8. Cold-on column injector with a duckbill valve sealing mechanism (@Hewlett-Packard Co #### *Programmed temperature vaporizer (PTV) - A programmed temperature vaporize involves placing sample into a cold injection port, where it is then heated and applied to column at any desired temperature. - A "universal" injector for opentubular columns since it temperature program may be changed so that it can be used either in cold injectors, splitless injectors, or split injectors. Figure 3.6. Schematic diagram of a PTV type injector. (From ref. [66]; @Wiley-VCH). CEE 772 #16 #### **Contents** - The primary components to a GC system - 1. Carrier Gas System (including Gas Clean Filters) - The concept of theoretical plates and van Deemter curves - Selection of proper carrier gas - 2. Sample Introduction System - Split & splitless injection - 3. Column (most critical component) - Column configurations: packed vs. open tubular/capillary - Stationary phase - 4. Detection System/GC Detectors - Types of detectors and their specific applications - 5. Computer ChemStation/Integrator CEE 772 #16 19 #### III. GC Column (heart of a GC system) - Column configurations: packed vs. open tubular/capillary columns - Stationary phase - Film thickness and column efficiency #### **Packed GC Columns** - Less ubiquitous application: fixed gas analysis - Lower column efficiency than that of capillary columns (smaller in length) - Larger sample capacity CEE 772 #16 25 #### **Particle Size of Supports** FIGURE 26-11 Effect of particle size on plate height for a packed GC column. The numbers to the right of each curve are particle diameters. (From J. Bohernan and J. H. Purneil, in Gas Chromatography 1958, D. H. Desty, ed., New York: Academic Press, 1958. With permission.) The efficiency of a gas chromatographic column increases rapidly with decreasing particle diameter of the packing. The pressure difference (head loss) required to maintain an acceptable flow rate of carrier gas, however, varies inversely as the square of the particle diameter; the latter relationship has placed lower limits on the size of particles used in GC because it is not convenient to use pressure differences that are greater than 50 psi. CEE 772 #16 # **Open Tubular/Capillary GC Columns** - Most widely used - High column efficiency (large number of theoretical plates due to long column length, up to 100 m) - Small sample capacity (split sample inside inlet) 27 # Open Tubular/Capillary GC Columns Fused silica--pure form of glass that is very inert but fragile Polyamide--provides great mechanical strength and flexibility Stationary phase # 2. Stationary Phase #### **Important Attributes** - 1. Low volatility (boiling point at least 100 °C higher than max. column operating temperature) - 2. Thermo stability (wide temperature operating range) - 3. Chemical inertness (non-reactive to both solutes and carrier gas) - 4. Solvent characteristics (differential solvent for different components) | Phase | Applications | Polarity | Temperature range °C | |----------------------------------|---|--------------------|----------------------| | DB1-Methyl Silicone | Hydrocarbons,
amines, pesticides,
PCB's | Non-Polar | -60–325 | | DB5-5%
Phenyl Methyl Silicone | Hydrocarbons, alkaloids, drugs, FAME's | Slightly polar | -60–325 | | DB 1701 | Aroclors, herbicides,
pesticides–for
confirmation | Intermediate | -20–280 | | DB Wax | Alcohols, glycols, aromatics | ₂ Polar | 40–240 | # **Qualitative Guidelines for Stationary Phase Selection** #### Sources: Literature review, Internet search, prior experience, advice from a vendor of chromatographic equipment and supplies #### General rule: "like dissolves like" - "Like" refers to the **POLARITIES** of the analyte and the immobilized liquid - The polarity of a molecule, as indicated by its dipole moment, is a measure of the electric field produced by separation of charge within the molecule - Polar functional groups: -CN, -CO, -OH, -COOH, -NH₂, -CHO, -X, etc. Nonpolar function groups: saturated alkane –CH, etc. CEE 772 #16 33 # **Types and Polarities of Stationary Phase** Table 2.4 Characteristic properties of some poly(siloxane) liquid phases used for packed column gas chromatography | Name | Structure | Viscosity
(cP) | Average
molecular | Temperature operating range (°C) | | |------------|--|-------------------|----------------------|----------------------------------|---------| | | | | weight | Minimum | Maximum | | OV-1 | Dimethylsiloxane | gum | > 106 | 100 | 350 | | OV-101 | Dimethylsiloxane | 1500 | 30,000 | <20 | 350 | | OV-7 | Phenylmethyldimethylsiloxane
80 % methyl and 20 % phenyl | 500 | 10,000 | <20 | 350 | | OV-17 | Phenylmethylsiloxane
50 % methyl and 50 % phenyl | 1300 | 40,000 | <20 | 350 | | OV-25 | Phenylmethyldiphenylsiloxane
25 % methyl and 75 % phenyl | >100,000 | 10,000 | <20 | 300 | | OV-210 | Trifluoropropylmethylsiloxane 50 % methyl and 50 % 3,3,3-trifluoropropyl | 10,000 | 200,000 | <20 | 275 | | OV-225 | Cyanopropylmethylphenylmethylsiloxane 9000 8,000 50 % methyl, 25 % phenyl and 25 % 3-cyanopropyl | | | <20 | 250 | | Silar 7CP | Cyanopropylphenylsiloxane 75 % 3-cyanopropyl and 25 % phenyl | | | 50 | 250 | | OV-275 | Di(cyanoalkyl)siloxane 70 % 3-cyanopropyl and 30 % 2-cyanoethyl | 20,000 | 5,000 | | 250 | | Silar 10CP | Di(3-Cyanopropyl)siloxane | | | 50 | 250 | CEE 772 #16 35 #### 3. Effect of Film Thickness on Column Efficiency #### **Contents** - The primary components to a GC system - 1. Carrier Gas System (including Gas Clean Filters) - The concept of theoretical plates and van Deemter curves - Selection of proper carrier gas - 2. Sample Introduction System - Split & splitless injection - 3. Column (most critical component) - Column configurations: packed vs. open tubular/capillary - Stationary phase - 4. Detection System/GC Detectors - Types of detectors and their specific applications - 5. Computer ChemStation/Integrator CEE 772 #16 #### **Characteristics of the Ideal Detector** Adequate sensitivity (application specific, i.e. adequate for certain tasks) - 1. Good stability and reproducibility - 2. A linear response to solutes that extends over several orders of magnitude (calibration purposes) - 3. A wide temperature range - 4. A short response time independent of flow rate - 5. High reliability and ease of use (unfortunately, usually not the case 🕙) - 6. Similarity in response toward all solutes/most classes of solutes - 7. The detector should be nondestructive CEE 772 #16 41 # **Typical GC Detectors** | Table 15.5 Properties of Selected Gas Chromatography Detectors | | | | | | | | |--|---|----------------------------------|---|--|--|--|--| | Туре | Approximate
limit of
detection (g s ⁻¹) | Approximate
linear
range | Comments | | | | | | Thermal conductivity
(TCD) | Universal | 103-104 | Universal detector
Measures changes in heat
conduction | | | | | | Flame ionization
(FID) | detectors 10 ⁻¹² | 10 ⁶ –10 ⁷ | Universal detector Measures ion currents from pyrolysis | | | | | | Electron capture
(EC or ECD) | 10^{-14} | 10 ² –10 ³ | Selective detector for compounds
containing atoms with high
electron affinities | | | | | | Flame photometric
(FPD) | 10 ⁻¹³ | 10 ² | Selective detector for
compounds containing S, P | | | | | | Nitrogen-phosphorus | $10^{-8} - 10^{-14}$ | 10 ⁵ –10 ⁷ | Selective for N, P containing compounds | | | | | | Photoionization
(PID) | $10^{-8} - 10^{-12}$ | 105 | Universal (some selectivity due to
to identity of gas in lamp) | | | | | | Hall Detector | 10-11 | 10 ⁵ | Specific detector for compounds
which contain halogen, S, or N | | | | | | Mass spectrometer (MS) | 10-12 | а | Universal detector | | | | | | Fourier-transform infrar | ed (FTIR) 10 ⁻¹⁰ | 10 ² | Polar molecules | | | | | $\it a.$ Varies, depending on the type of mass spectrometer as well as the kinds of compounds being analyzed. CEE 772 #16 #### 1. Flame Ionization Detector (FID) FIGURE 27-8 A typical flame ionization detector. (Courtesy of Agilent Technologies.) - Most common detector for GC - In an FID, effluent from the column is directed into a small air-hydrogen flame. Most carbon atoms (except C=O) produce radicals (CHO+) in the flame: #### CH + O→ CHO+ + e- - Electrons are used to neutralize the CHO⁺ atoms and the ions are collected at an electrode to create a current to be measured. This current is proportional to the number of molecules present. - The ionization of carbon compounds in the FID is not fully understood, although the number of ions produced is roughly proportional to the number of reduced carbon atoms in the flame. CEE 772 #16 #### **Pros and Cons of FID** - Advantages: - 1. universal detector for organics - 2. does not respond to common inorganic compounds - 3. mobile phase impurities not detected - 4. carrier gases not detected - 5. limit of detection: FID is 1000x better than TCD - 6. linear and dynamic range better than TCD CEE 772 #16 Disadvantage: destructive detector #### 2. Thermal Conductivity Detector (TCD) FIGURE 27-9 Schematic of (a) a TCD cell, and (b) an arrangement of two sample detector cells and two reference detector cells. (From J. Hinshaw, *LC-GC*, **1990**, *8*, 298. With permission.) - One of the earliest detectors of GC - The device contains an electrically heated source whose temperature at constant electrical power depends on the thermal conductivity of the surrounding gas. - Twin detectors are usually used, one being located ahead of the sampleinjection chamber and the other immediately beyond the column. The bridge (Wheatstone bridge) circuit is arranged so that the thermal conductivity of the carrier gas is canceled. # 2. Thermal Conductivity Detector (TCD) #### Twin detectors FIGURE 27-9 Schematic of (a) a TCD cell, and (b) an arrangement of two sample detector cells and toy air ence detector cells. (From J. Hinshaw, LC-GC, 1990, 8, 298. With permission.) - The thermal conductivities of helium and hydrogen (commonly used carrier gases for TCD) are roughly 6~10 times greater than those of most organic compounds. Thus, even small amounts of organic species cause relatively large decreases in the thermal conductivity of the column effluent, which results in a marked rise in the **temperature** of the detector. - **Advantages:** Simplicity, large linear dynamic range, nondestructive - **Disadvantages:** Low sensitivity (precludes their use with WCOT columns with small _{CEE 772} amounts of sample) #### 3. Electron Capture Detector (ECD) - Radioactive decay-based detector - Selective for compounds containing electronegative atoms, such as halogens, peroxides, quinones, and nitro groups - The sample effluent from a column is passed over a radioactive β emitter, usually ⁶³Ni. An electron from the emitter causes ionization of the carrier gas (often N₂) and the production of a burst of electrons. - In the absence of organic species, a constant standing current between a pair of electrode results from this ionization process. The current decreases significantly in the presence of organic molecules containing electron negative functional groups that tend to capture electrons. EE 772 #16 4 #### 3. Electron Capture Detector (ECD) - lonization of carrier gases: - $N_2 + \beta^{\text{\tiny -}} \rightarrow N_2^{\text{\tiny +}} + \text{ e}^{\text{\tiny -}}$ $$Ar_2 + \beta^- \rightarrow Ar_2^+ + e^-$$ - · Advantages: - useful for environmental testing detection of chlorinated pesticides or herbicides; polynuclear aromatic carcinogens, organometallic compounds - selective for halogen- (I, Br, CI, F), nitro-, and sulfur-containing compounds - detects polynuclear aromatic compounds, anhydrides and conjugated carbonyl compounds - Disadvantages: - > could be affected by the flow fate # 4. Thermionic Detector/Nitrogen-Phosphorous Detector (NPD) - A NPD is based on the same basic principles as an FID. - However, a small amount of alkali metal vapor in the flame, which greatly enhances the formation of ions from nitrogen and phosphoruscontaining compounds. - The NPD is about 500-fold more sensitive that an FID in detecting phosphorous-containing compounds, and 50-fold more sensitive to nitrogen-containing compounds - Applications: Organophosphate in pesticides and in drug analysis for determination of amine-containing or basic drugs CEE 772 #16 #### **5. Electrolytic Conductivity Detector** FIGURE 27-11 Diagram of a Hall electrolytic conductivity detector. (Courtesy of ThermoElectron Corp.) - Element-selective detector for halogen-, sulfur- and nitrogencontaining compounds - compounds containing halogens, sulfur, or nitrogen are mixed with a reaction gas in a small reactor tube, usually made of Ni. The products from the reaction tube are then dissolved in a liquid, which produces a conductive solution. The change in conductivity as a result of the ionic species is then measured. CEE 772 #16 #### **Other GC Detectors** Photoionization Detector aromatic hydrocarbons organosulfur/organophosphorous Atomic Emission Detector element-selective detector Flame Photometric Detector sulfur and phosphorous containing compounds CEE 772 #16 #### *Mass Spectrometry Detector (MS) • One of the most powerful detectors for gas chromatography SAVE FOR LATER CEE 772 #16 53 #### **Contents** - The primary components to a GC system - 1. Carrier Gas System (including Gas Clean Filters) - The concept of theoretical plates and van Deemter curves - Selection of proper carrier gas - 2. Sample Introduction System - Split & splitless injection - 3. Column (most critical component) - Column configurations: packed vs. open tubular/capillary - Stationary phase - 4. Detection System/GC Detectors - Types of detectors and their specific applications - 5. Computer ChemStation/Integrator CEE 772 #16 #### V. Quantitative Chromatographic Analysis #### Quantitative Analysis Based on a comparison of either the height or the area of the analyte peak with that of one or more standards #### Peak height vs. Peak area **Peak heights** are inversely related to peak width. Thus, accurate results are obtained with peak heights only if variations in column conditions do not alter the peak width during the period required to obtain chromatograms for samples and standards. *Peak areas* are independent of broadening effects, which are usually the preferred method of quantitation. \star most modern chromatographic instruments are equipped with computers or digital electronic integrators that permit precise estimation of peak areas CEE 772 #16 # **Questions?** Rosa Yu Email: victorosa1212@gmail.com CEE 772 #16 56 • To next lecture CEE 772 #16