Updated: 12 October 2014

Print version

CEE 772: Instrumental Methods in Environmental Analysis Lecture #10

Sample Preparation: Basics and Physical Methods (Skoog, nothing)

(Harris, Chapt. 23 & 28) (641-646 & 817-839)

David Reckhow

CEE 772 #10

Other References

- Solid Phase Extraction: Principles and Practice, by E.M. Thurman and M.S. Mills, Wiley, 1998
- Extraction Methods for Environmental Analysis, by J.R. Dean, Wiley, 1998
- Sample Preparation in Chromatography by S.C. Moldoveanu and V. David, Elsevier, 2002
- Sample Preparation for Trace Elemental Analysis, by Z. Mester & R.L. Sturgeon, Elsevier, 2003
- Handbook of Derivatives for Chromatography, by K. Blau & J. Halket, 2nd Edition, Wiley, 1993
- Handbook of Analytical Derivatization Reactions, by D.R. Knapp, Wiley, 1979

David Reckhow CEE 772 #10

Sample Preparation

- Reasons for pre-treatment
 - Improve method sensitivity
 - Concentrate analyte
 - Change chemical nature of analyte to get greater detector response
 - Remove interfering substances (isolation)
 - Solvent (or phase) transfer for compatibility with analytical method

David Reckhow CEE 772 #10

Physical Pretreatment

- o Concentration
 - o Phase change
 - Freeze concentration, freeze drying, vacuum distillation, atmospheric pressure distillation
 - o Membrane processes
 - o Reverse osmosis (RO), ultrafiltration (UF), dialysis
- o Isolation
 - o Gas transfer/ gas stripping
 - o Purge & trap (P&T), closed loop stripping (CLSA), headspace analysis
 - o Solvent Extraction (SE)
 - Liquid-liquid extraction (LLE), soxhlet extraction, sonication extraction, supercritical fluid (SFE)
 - Solid-phase Extraction (SPE) or adsorption
 - o Ion exchange resins, hydrophobic resins, activated carbon, polar adsorbents, micro methods (SPME)

David Reckhow CEE 772 #10 4

Physical Pretreatment (cont.)

- Change in Solvent/Phase
 - ❖Solid to liquid
 - Many of the same techniques as solvent extraction
 - Liquid to liquid
 - Solvent exchange: again similar to earlier solvent extraction

David Reckhow CEE 772 #10

Chemical Pretreatments

- ➤ Derivatization
 - **≻**Alkylation
 - **>** Silylation
 - ➤ Detector-specific derivatives
- **→** Digestion
- **≻** Complexation
- **≻** Reduction

David Reckhow CEE 772 #10 6

Liquid/liquid extraction

- Transfer from one liquid to another
 - Solvents:
 - Water
 - Organics: diethyl ether, pentane, methyl tertiary butyl ether, ethyl acetate
 - Rely on equilibrium partitioning

$$S_{(aq)} \overset{K}{\longleftrightarrow} S_{(sol)}$$

David Reckhow

CEE 772 #10

Liquid/Liquid Extraction

- Partition Coefficients
 - Relative solubility of an analyte in an organic solvent to its solubility in water

$$K_D = \frac{C_s}{C_w}$$

 Or more generally, the relative solubilities in two different and immiscible solvents

 $K = \frac{[S]_2}{[S]_1}$

David Reckhow

CEE 772 #10

Δ

LLE calculations

- Fractional extraction efficiency
 - The mass of analyte in the organic solvent divided by the total analyte mass

$$f_e = \frac{m_s}{m_s + m_w}$$

$$f_e = \frac{C_s V_s}{C_s V_s + C_w V_w}$$

David Reckhow

CEE 772 #10

LLE Calculations (cont.)

o Divide numerator and denominator by C_sV_s

$$f_e = \frac{1}{1 + \left(\frac{C_w}{C_s}\right)\left(\frac{V_w}{V_s}\right)}$$

o And substituting for the partition coefficient

$$f_e = \frac{1}{1 + \left(\frac{1}{K_D}\right) \left(\frac{V_w}{V_s}\right)}$$

David Reckhow

CEE 772 #10

10

Example

- Chloroform has a pentane:water partition coefficient of 50 at 20°C. What is the fractional extraction efficiency for a system consisting of 1 liter of aqueous solution and
 - a. 50 mL pentane?
 - b. 25 mL pentane, followed by phase separation, then a second 25 mL volume of pentane?

$$f_e = \frac{1}{1 + \left(\frac{1}{50}\right) \left(\frac{1000}{50}\right)} = 0.714$$

$$f_e = \frac{1}{1 + \left(\frac{1}{50}\right) \left(\frac{1000}{25}\right)} = 0.555$$

David Reckhow

CEE 772 #10

11

Example (cont.)

• however, for the second extraction, the concentration is reduced to 1-fe of the original, so that the overall, two-step serial extraction efficiency, f2e, is:

$$f_{2e} = f_e + (1 - f_e)f_e$$

$$f_{2e} = 0.555 + (1 - 0.555)0.555 = 0.802$$

Or 80.2%

David Reckhow

CEE 772 #10

12

LLE Calculations (cont.)

☐ Writing a mass balance on the analyte before and after extraction

$$C_{wi}V_{w} = V_{w}C_{w} + V_{s}C_{s}$$

☐ Allows us to calculate the concentration factor achieved by extraction

$$\frac{C_s}{C_{wi}} = \frac{1}{\frac{1}{K_D} + \frac{V_s}{V_w}}$$

And if K_D is large

$$\frac{C_s}{C_{wi}} \approx \frac{V_w}{V_s}$$

David Reckhow

CEE 772 #10

13

Effect of speciation

Distribution Coefficients

 $D = \frac{\text{total concentration in phase 2}}{\text{total concentration in phase 1}}$

 Which for a basic analyte partitioning between water and an organic solvent becomes

And since:

$$K_a = \frac{\left[H^+\right]\left[B\right]}{\left[BH^+\right]}$$

■ Then:

$$D = \frac{K \bullet K_a}{K_a + |H^+|} = K\alpha_1$$

David Reckhow

CEE 772 #10

Complexation methods (cont.)

 Extraction of metal ions by dithizone into carbon tetrachloride.

8

Other issues in LLE

- Salting out
 - Increases K_D
 - Produces more stable interface, fewer emulsions
- Addition of colored reagent
 - Improve visual identification of interface
 - e.g., CuSO₄

David Reckhow CEE 772 #10 17

To next lecture

David Reckhow CEE 772 #10 18