Updated: 12 October 2014

Print version

CEE 772: Instrumental Methods in Environmental Analysis

Lecture #8

Specialized Analyzers: Total Organic Carbon & Total Nitrogen

(Skoog, Chapts. 16C, 24D; pp.399-401, 632-636)

(Harris, Chapt. 16-6 & 17-4) (pp.430, 457-461)

David Reckhow

CEE 772 #8

Literature on TOC

- "Selection of a TOC Analyzer", Crane, G.A.; American Laboratory, July 1988, page 52.
- 2. Standard Methods for the Examination of Water and Wastewater, 20^{th} Edition 5310A
- "Oxidation and Detection Techniques in TOC Analysis", Small, R.A. et al; American Laboratory, February 1986, page 144.
- 4. "The Total Organic Carbon Analyzer and It's Application to Water Research", Emery, R.M. et all; Journal WPCF, September 1971.
- "Comparison of High-Temperature and Persulfate Oxidation Methods for Determination of Dissolved Organic Carbon in Freshwaters", Kaplan, L.A.; American Society of Limnology and Oceanography, January 1992.
- "Freshwater DOC Measurements by High-Temperature Combustion: Comparison of Differential (DTC-DIC) and DIC Purging Methods", Fukushima, T. et al; Water Research, 30(11) 2717, November 1996.
- 7. Water Research 34(14)3575 2000
- 8. Water Research 35(13)3057 2001

David Reckhow CEE 772 #8 2

What is TOC?

- Total Organic Carbon
- Organic contaminants (NOM's, insecticides/herbicides, agricultural chemicals)
 - reach surface water via rainfall runoff
- Industrial organics due to spills
- Domestic/Industrial wastewater effluent

David Reckhow CEE 772 #8

Fractionation & Nomenclature Total Carbon (TC) Inorganic Carbon (IC) Purgeable Non-Purgeable (Dissolved) (Particulate) Particulate Dissolved (PtOC) David Reckhow Total Organic Carbon (TOC) Purgeable Organic Non-purgeable Organic Carbon (NPOC) Particulate Dissolved (PtOC) David Reckhow Total Carbon (TOC) Total Organic Carbon (TOC) Purgeable Organic Non-purgeable Organic Carbon (NPOC) Particulate Dissolved (PtOC) (DOC)

TOC vs. TC & IC

- TOC = Total Carbon (TC) Inorganic Carbon (IC)
- TOC = all carbon atoms covalently bonded in organic molecules
- TC is a measure of all the carbon in the sample
- IC = carbonate, bicarbonate, and dissolved carbon dioxide
 - IC is often analyzed in liquid samples by acidifying with an inorganic acid to pH
 2 or lower, then sparging for a few minutes with a stream of gas
- POCs (or VOC) = the fraction of TOC removed from an aqueous solution from gas stripping under specified cond.
- NPOC = the fraction of TOC not removed by gas stripping
- DOC = the fraction of TOC that passes through a 0.45 μm-pore diameter filter
- PtOC (or "suspended org. carbon) = the fraction of TOC retained by a 0.45 μm-pore diameter filter

David Reckhow CEE 772 #8

Distinguishing TOC from TIC

- Direct NVTOC measurement
 - remove IC by acidification and purge
- By difference: two channel
 - Measure TC (high temp) and IC (low temp)
 - Subtract
- By difference: gas & liquid.
 - Measure TC and PC (both high temp)
 - Subtract

- Most common approach
 - Can result in loss of OC due to precipitation at low pH
- Used by old Beckman analyzers
 - Separate channels
 - Two separate measurements
- Some analyzers have a Purgeable carbon (PC) cycle
 - Again requires 2 separate measurements

David Reckhow

CEE 772 #8

TOCs and Drinking Water

- Organic compounds may react with disinfectants to produce potentially toxic and carcinogenic compounds, or "disinfection byproducts"
- Drinking water TOCs range from less than 100 μg/L to more than 25,000 μg/L
- Wastewater TOC > 100 mg/L

David Reckhow CEE 772 #8

Origins

- Humic substances (humic and fulvic acids)
 - Organic detritus modified by microbial degradation
 - lignin origin vs microbial
 - resistant to further biodegradation
 - "old" organics
- Non-humics & Structurally-defined groups
 - may be relatively "new"
 - includes many biochemicals and their immediate degradation products
 - generally more biodegradable
- concentrations are highly variable with season

Methods of TOC Analysis

- High-Temperature Combustion Method
- Persulfate-Ultraviolet or Heated-Persulfate
 Oxidation Method
- Wet-Oxidation Method (equipment for this method is no longer manufactured)

Great Recovery

TOC

Table I. Analyses of Standard Solutions

		Carbon	, p.p.m.			
			Found		Std.	Av. %
Compound	Calcd.	Max.	Min.	Av.	dev. $(\pm)^a$	recovery
Benzoic acid	68.8	69.0	67.4	68.2	0.66	99.1
Phenol	76.6	77.2	76.5	76.9	0.30	100.4
Sucrose	104.8	105.1	104.3	104.5	0.40	99.7
Glycine	100.7	101.2	99.5	100.3	0.69	99.6
Pyridine	105.6	104.4	103.6	104.2	0.40	98.7
Urea	100.0	100.9	99.1	99.8	0.86	99.8
Sodium cyanide	122.5	122.1	119.5	120.5	1.11	98.4
Acetanilide	75.4	76.0	75.0	75.4	0.48	100.0
p-Nitroaniline	106.2	105.8	104.9	105.4	0.52	99.2
4-Aminoantipyrine	111.5	110.6	108.9	110.2	0.85	98.8
Sulfanilic acid Diphenylaminesulfonate,	89.3	90.5	88.6	89.3	0.90	100.0
Ba salt	87.8	87.6	86.8	87.4	0.40	99.5
dl-Methionine	103.0	102.7	101.8	102.5	0.45	99.5
2,4,6-Trichlorophenol	75.4	76.0	74.0	75.0	0.84	99.5
Sodium carbonate	99.5	100.0	99.2	99.4	0.40	99.9
Acetic acid in 20% NaCl	100.0	101.0	99.0	100.0	0.82	100.0
Acetic acid in 20% CaCl ₂	100.0	100.0	98.1	99.1	0.78	99.1

 $^{\alpha}$ All results based on 4 determinations. Calibrations made with standard solutions of acetic acid in water.

UMass TOC Instrumentation

- High Temperature Pyrolysis
 - Beckman Corp., Model 915 (the first!)
 - Shimadzu Model 4000 (308 Elab II)
 - Shimadzu Model 5000 (201 & 308 Elab II)
- UV-Persulfate
 - Dohrmann Model DC-80 (Marston 24)
- Wet Chemical Oxidation
 - OI Corp., Model 700 with persulfate digestion (Environmental Institute)

High-Temperature Combustion Method

Advantages:

- Oxidizes particulates and solids
- Rapid
- Relatively interference-free

Disadvantages

- Low sensitivity (min. detectable conc. = 1 mg C/L or less depending on instrument)
- Highest maintenance (particularly in high temp. components)
- Prone to lose CO₂ in stream condensation phase
- Problem recovering certain aromatics
- Low salt tolerance
- Difficult to obtain reliable system blanks
- Can accumulate nonvolatile residues in the analyzer

Persulfate-Ultraviolet or Heated-Persulfate Oxidation Method

• Advantages:

- High sensitivity (< 1 mg C/L samples)
- Good recovery in most applications
- Good precision
- Low maintenance
- Nonvolatile residuals are drained from the analyzer
- Disadvantages:
 - Potential interference with halide samples at CO₂ detection phase in oxygen-rich atmosphere

Non-Dispersive Infrared Analysis (NDIR)

- All EPA approved methods for organic carbon analysis require NDIR method
- Measures infrared light absorbed by carbon dioxide as it passes through an absorption cell
- CO₂ Property → Absorbance = 4.26 μm (IR range)
- TSI Monitor [CO₂] determined when the instrument is calibrated using pure nitrogen (0 ppm CO₂) and a known concentration of CO₂ such as 1000 or 5000 ppm

David Reckhow CEE 772 #8

NDIR (con't)

- "Nondispersive" no monochromator and infrared sources are broadband emitters
- Detector cells are pressure-sensitive: affected only by wavelengths absorbed by CO₂
- Interference caused by gases that have overlapping infrared absorption bands – like water vapor
 - Therefore, water vapor removed by condensation before getting to the detector

Beer's Law

- A = a*b*c
 - A = Absorbance
 - a = absorptivity coefficient
 - b = path length
 - c = analyte (CO₂) concentration

<u>OR</u>

- $I = I_o e^{kP}$
 - I = intensity of light striking the IR detector
 - I₀ = measured signal with 0 ppm CO₂
 - k = a system dependant constant
 - P = [CO₂]

Instrument Specs. Shimadzu 5000

- Analyte = TC, IC, TOC (TC-IC), NPOC
- Method Combustion (680° C)/NDIR gas analysis
- Measuring Range = 4 ppb to 4000 ppb
- Avg. Analysis Time = 2 3 min. for both TC and IC
- Shimadzu ASI-5000 Automatic Sample Injector
 - 78 vial or 16 vial turntables available
 - Rinsing between samples minimizes sample "carry-over"

David Reckhow CEE 772 #8 23

Shimadzu 5000 TOC Analyzer (schematic) Sorge Device Composition (sold by the processor) of the processor of

• Chemiluminescent detection

2 NO+2 O3
$$\rightarrow$$
2 NO2*+2 O2
NO₂* \rightarrow NO₂+h

Rapid decay of the NO₂* produces light in the 590-2,900 nanometer range. This light is detected and amplified by a photomultiplier tube.

David Reckhow CEE 772 #8 27

 Table 3. Recovery of N from commonly cited N compounds dissolved in ultrapure water using the coupled HTCO TOC-NCD method in our laboratory (recovery in relation to potassium phthalate/glycine standard), and literature results

Compound	% Recovery	Examp	les of %	recovery	cited in th	ited in the literature				
		[1]	[2]	[17]	[24]	[34]				
Ammonium chloride	96.2	100.2	100		97					
Nitrate (K or Na)	100.6	100.1	90		102					
N-1-Naphthylene-diamine	92.5	96								
EDTA	92.2	101	100		102					
Urea	91.19	101.1	101	100	101	94.3				
Glycine	99	99.6	90			99.5				
Caffeine	79.5		90	102	97					
Thiourea	99		90	94	96					

	Total Orga Anal	nic Carbon lyzer	PC-contro Organic Carl	olled Total oon Analyzer	Basic model	Wet oxidation			
	high- sensitivity model	standard model	high- sensitivity model	standard model	Total Organic Carbon Analyzer	Total Organic Carbon Analyzer	Organic Carbon	Organic Carbon	d Total Organic Carbon Analyzer
Model	TOC-VCSH	TOC-VCSN	TOC-VCPH	TOC-VCPN	TOC-VE		TOC-VWP		
Measuremen t method	680 de	egC combustion	n catalytic oxid	ation/NDIR me	thod	wet oxida	tion/NDIR		
Operation method	stand	alone	PC-cor	ntrolled	standalone	standalon e	PC- controlled		
Measured items		TC,IC,TC (optional	OC,NPOC POC,TN)		TC,IC,TOC , NPOC (optional TN)	TC,IC,TC	OC,NPOC		
Applicable samples	aqueou	s sample (option	onal solid/gas s	amples)	aqueous sample	aqueous	sample		
Measuremen t range (mg/L)	TC:0 to 25000 IC:0 to 30000	TC:0 to 25000 IC:0 to 3000	TC:0 to 25000 IC:0 to 30000	TC:0 to 25000 IC:0 to 3000	TC:0 to 20000 IC:0 to 20000		o 3000 o 2500		
Detection limit	4μg/L	50μg/L	4μg/L	50μg/L		0.5	ιg/L		

		Total Organic Carbon Analyzer		olled Total : Carbon lyzer	Basic model Total Organic	Wet oxidatio n Total	PC- controll d Total	
	high- sensitivity model	standard model	high- sensitivity model	standard model	Carbon Analyzer	Organic Carbon Analyze r	Organic Carbon Analyzer	
Measurement accuracy (reproducibilit y)		CV 1.5	% max.	'	CV2% max. (CV3% max. at 8000mg/L or higher)	(CV2% 1000r	CV1.5% max. (CV2% max. at 1000mg/L or higher)	
Measuring	TC: approx.3min s.	TC: approx.3min s.	TC: approx.3min s.	TC: approx.3min s.	TC:approx.3min s.	TC:appr	TC:approx.4mins.	
time	IC: approx.3min s.	IC: approx.4min s.	IC: approx.3min s.	IC: approx.4min s.	IC:approx.3min s.	IC:approx.4mins.		
Sample injection		automatio	c injection		manual injection	automati	c injection	
Sample injection volume	10 to 2000μL variable	10 to 150μL variable	10 to 2000μL variable	10 to 150μL variable	1 to 150µL (requires change of syringe)		50 to 20400 μL variable	
IC pre- treatment	Automa	tic internal aci	dification and	sparging	Sparge gas supply	Automatic internal acidification and sparging		

	Total Organic Carbon Analyzer		Organic	C-controlled Total Organic Carbon Analyzer		Wet oxidation	PC- controlled Total	
	high- sensitivity model	standard model	high- sensitivity model	standard model	Organic Carbon Analyzer	Carbon Analyzer	Organic Carbon Analyzer	
Automatic dilution		dilution fac	ctor 2 to 50		none	dilution factor 2 to 50		
Gas consumption	approx. 1440 L/month	approx. 2210 L/month	approx. 1440 L/month	approx. 2210 L/month	approx. 2210 L/month	approx. 3000L/month		
		(0	perating con	ditions: 8 h	ours/day x 5	days/week)	eek)	
Operating keys	built	t-in	use	PC	built-in	built-in		
Display	built-in	LCD	use	PC	built-in LCD	built-in LCD		
Printer	(CENTR		PC pr	inter	Optional	(CENTRONICS, ESC/P) PC printer		
Ambient temperature range				5 to 35	degC		AC100 ~ 127V ± 10%, MAX350VA AC220 ~ 240V ± 10%, MAX350VA	
Power supply			27V ± 10%, N 40V ± 10%, N			MAX350 AC220 ~ 240\		
Dimensions		approx.	(W)440 x (D)560 x (H)4	60mm (exclu	iding protrusions)		
Weight		approx	40 kg		approx. 38 kg	approx. 40kg		

Comparison of TOC levels

- Sample 1 Bridgeport Hydraulic Company (BHC) potable water
 - Private water supply company in Connecticut
- Sample 2 water taken from water fountain in Marcus Building on the UMass campus
- Sample 3 water taken from Campus Pond to simulate raw water sample

TOC Analytical Accuracy and QA

2722 T. Fukushima et al. ision of DOC measurements of natural samples (mgC 1-1) STP Differential method D-DOC (DTC - DIC) P-DOC 17.41 7.89 0.16 (D-DOC)-(P-DOC) 10.55 D-DOC mode (Bias 4 of Table 1) P-DOC mode (Bias 2 of Table 1) 0.14 0.07 0.01 0.02 DIC × 0.0058 0.12 0.12 mgC/I D-DOC mode; DTC D-DOC mode; DIC D-DOC mode; DOC P-DOC mode; DOC

- Fukushima et al November 1996
- Used Shimadzu 5000
- Believed the differential method was more user friendly than the purging method, but both gave good results

David Reckhow CEE 772 #8

TOC Analytical Accuracy and QA

- Kaplan January 1992
- Compared Shimadzu 5000 to O.I.Model 700 (persulfate oxidation method)
- Determined that Pt-catalyzed persulfate oxidation at 100° C with an O.I. 700 underestimates DOC concentrations in freshwaters by ~5% when compared to the Shimadzu 5000, but considers that a "small source of error".

Comparison of methods

From:
 <u>Tekmar</u>
 <u>application</u>
 <u>document</u>

 TOC Analysis of Difficult Compounds

UV/Persulfate Analysis											
	1ppm		П	5ppm			50ppm				
Sample Type	RSD %	Percent Recovery		RSD %	Percent Recovery		RSD %	Percent Recovery			
Potassium Hydrogen Phthalate (KHP)	1.02%	103.0%	П	1.27 %	98.4%		0.73	101.0%			
1,4 Benzoquinone	1.07 %	99.0%	П	1.17%	10 1%		0.78%	103.0%			
Citric Acid	0.60%	103.0%	П	0.83%	97.8%		1.41%	101.0%			
Isoni cotinic Acid	0.92%	103.0%	П	1.14%	10 1%		2.39%	99.2%			
L-glutamate	0.52%	104.0%	П	0.87%	97.4%		2.26%	101.0%			
Na Hexane -1- Sulfonate	0.65%	96.0%	П	0.50%	92.6%		1.50%	95.4%			
Tryptophan	0.80%	109.0%	П	0.92	95.2%		1.49	99.2%			
Lignosulfonic Acid	3.72%	96.0%	П	1.32 %	98.4%		2.42%	98.2%			
Tannic Acid				0.04%	95.4%		2.05%	97.9%			

Combustion Analysis											
	1ppm		10ppm			50ppm					
Sample Type	RSD %	Percent Recovery	RSD %	Percent Recovery		RSD %	Percent Recovery				
Potassium Hydrogen Phthalate (KHP)	2.35%	102.0%	0.851	6 101.0%		2.03%	98.4%				
1,4 Benzoquinone	4.55%	104.0%	5.791	6 98.1%		2.74%	93.9%				
Citric Acid	2.05%	110.0%	1.419	6 101.0%		0.91%	99.0%				
Isoni cotinic Acid	5.08%	106.0%	2.759	95.9%		1.31%	97.5%				
L-glutamate	4.58%	111.0%	0.771	95.8%		2.48%	96.6%				
Na Hexane -1- Sulfonate	2.22%	108.0%	0.841	92.0%		1.40%	92.7%				
Tryptophan	5.04%	96.0%	2.449	95.2%		1.52%	95.5%				
Lianos Manio Asid	404%	99.084	0.000	90.486		0.20%	00 584				

David Reckhow

• To next lecture

David Reckhow

CEE 772 #8