Atomic Spectrophotometry

- **Use**
 - Analysis of metals
 - Very sensitive

- **Three types**
 - Absorption (AAS)
 - Flame and electrothermal (furnace)
 - Emission (AES)
 - Often used with plasma
 - Fluorescence

Atomic Spectroscopy: Instrument Design

(Skoog, Chaps. 8 & 9; pp.192-203, 206-227)

(Harris, Chapt. 22)
(pp.615-635)
Atomic Absorption Spectrophotometers

- Sample holder is replaced with an atomizer

Diagram showing the components of an atomic absorption spectrophotometer, including light source, wavelength selector, detector, and other parts.
Atomic Absorption

- General

- Flame

Possible transitions

Figure 8-1: Energy level diagrams for (a) atomic sodium and (b) magnesium(II) ions. Note the similarity in pattern of lines but not in actual wavelengths.
Light Source

- Hollow Cathode Lamps

Components

- Quartz Window
- Cathode (negative)
 - Contains element of interest
- Low pressure chamber
 - With some Ar or Ne
 - (become ionized)

Three steps

- Sputtering
 - Metal atoms are dislodged
- Excitation
 - Through contact with fill gas ions
- Emission
Hollow Cathode Lamps

- Most are single element
- Some multi-element lamps are available
 - More than one metal in the cathode
- Currents are optimized
- Short life
 - Moderate cost ($180-$250)
 - Less suited for volatile elements

Electrodeless discharge lamps (EDL)

- Features
 - Ratio frequency is applied to a coil
 - Excites elements or its salts inside quartz bulb
 - Requires a special power supply
- Comparison with hollow cathode lamps
 - EDLs are brighter, more intense
 - Give lower MDLs for A
 - EDLs have a longer life
 - EDLs have some problem
Flame

- Burner design

Temperatures of some common flames

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Oxidant</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>Air</td>
<td>2000-2100</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>Air</td>
<td>2100-2400</td>
</tr>
<tr>
<td>H₂</td>
<td>O₂</td>
<td>2600-2700</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>N₂O</td>
<td>2600-2800</td>
</tr>
</tbody>
</table>

Flame AA sample treatment
Temperature

Impact of flow and position
The energy E_0 passing out of the flame is the difference between the incoming energy E_1 and the energy absorbed by the sample to raise it to an excited state.

Instrument Design
Background Correction

- Slit widths are normally recommended with method
- Narrow slit widths
 - May increase linearity
 - May also decrease signal to noise ratio

Bandwidth

- Slit widths are normally recommended with method
- Narrow slit widths
 - May increase linearity
 - May also decrease signal to noise ratio
Matrix Effects 1

- Viscosity
 - Phosphoric acid example
- Sulfuric acid vs MeOH

Matrix Effects 2

- Chemical Interference
 - Formation of Ca$_3$(PO$_4$)$_2$
- Ionization Interferences
 - Ba ionizes readily
 - K ionizes even more easily & elevates electron density in flame
• To next lecture