Course Administration

- **Schedule**
 - TuTh: lecture, M: lab in Elab II, room 301/308

- **Course Syllabus**
 - Book: Skoog et al., 2006
 - supplemented by Harris, 2006
 - course notes (Reckhow, 2012)

- **Detailed Course Outline**

- **Instrument Project**
 - Design and execute lab exercise
 - Supporting lecture
 - Written report

- **Web site**
Relation with Environmental Engineering

- Math
- Biology
- Environmental Engineering
- Physics
- Chemistry

Relation with other Chemistry Disciplines

- Physical Chemistry
- Analytical Chemistry
- Inorganic Chemistry
- Organic Chemistry
- Kinetics
- Thermodynamics
- 680
- 690K

First of two courses on chemical analysis
Questions for Environmental Analytical Chemists

- How do we assess water quality?
 - What to measure, when and why
- How do we do it?
 - Gravimetry, titrimetry, spectrophotometry, chromatography
- What can chemical analysis tell us?
 - What can't it be used for?
- What is the significance of WQ parameters?
 - Metals, nutrients, solids, organics?
- How should samples be collected and preserved?
 - How do we spot blunders?
- How sure can we be of the measurements?

Why learn WQ analysis?

- You may have to make these measurement yourself
 - As a consultant
 - As a utility or industrial employee
 - As a graduate student
- You may need to interpret and critique water quality data collected by others
- You may need to select the types of water quality analyses required for a particular job
Review

- Laboratory Basics
 - CEE 577
 - Early Chapters in Harris
- Units
 - Mass based
 - Molarity
 - Molality
 - Normality
 - Mole fraction
 - Atmospheres
- Chemical Stoichiometry
 - mass balance
 - balancing equations
- Thermodynamics
 - law of mass action
 - types of equilibria
Chemical Equilibria

- Law of mass action
 - equilibrium quotients
- Examples
 - ion product of water
 - acid dissociation
 - precipitation
 - redox
 - adsorption
 - volatilization

Personal Safety

- Lab coats
 - Recommended for protection from acids & bases
- Goggles
 - Especially important if you don’t wear shatter-proof glasses
- Gloves
 - Latex: good flexibility, but leaky
 - Butyl rubber: much better
- General
 - Avoid loose fitting clothing
Lab Safety

- Washes
 - Eye wash
 - Squeeze bottle
 - Plumbed fixture
 - Drench Shower

Eye wash

- In Attleboro WTP
Lab Safety

- Fire
 - Extinguisher
 - Fire blanket

- General: EH&S safety manual
 - http://www.umass.edu/safety/lhs.html

Vapors

- Fume hood
 - Face velocities
 - Sash position
 - EH&S standards
 - http://www.umass.edu/safety/fume-hood.html
Disposal

- General waste
 - Non recyclables
- Recyclable materials
 - Paper, plastic
- Non hazardous Chemical waste
 - Organic waste (container with EH&S hazardous waste label)
 - Aqueous waste (flushed down a drain after pH neutralization)
- Hazardous wastes
 - Definitions
 - Typical Examples

To next lecture