

Arsenic Geology

- 20th in Abundance in Earth's Crust
- Typically Associated with Igneous or Sedimentary Rocks
 - Arsenic Concentrations Tend to be High in Igneous Rocks Containing Iron Oxides
- Often Associated with Sulfidic Ores

From presentation by Philip Brandhuber (2001)
David Reckhow CEE 680 #53

Geology (cont.)

- Approximately 245 Arsenic Bearing Minerals have been Identified
- Some Common Arsenic Bearing Minerals
 - Realgar (AsS)
 - Orpinent (As₂O₃)
 - Arsenopyrite (FeAsS)
 - Scorodite (FeAsO₄ · H₂O)

From presentation by Philip Brandhuber (2001)

David Reckhow CEE 680 #53

Arsenic Mobility

- Theoretically As(III) tends to be more Mobile than As(V)
 - · As(V) will Strongly Sorb to Iron Oxides
 - To a lesser Extent, As(V) will Sorb to Manganese Oxides
- However, As(VI) Associated with Iron Oxides may be Transported (Colloidal As)
- Changes in Redox Conditions may Mobilize Arsenic

From presentation by Philip Brandhuber (2001)

David Reckhow

CEE 680 #53

	Equilibrium constants used in the computer modeling	
	Acid-Base Reactions	log K
	$AsO_4^{3-} + H^+ = HAsO_4^{2-}$	11.60
	$AsO_4^{3-} + 2H^+ = H_2AsO_4^-$	18.35
	$AsO_4^{3-} + 3H^+ = H_3AsO_4$	20.60
	$AsO_{3}^{3-} + H^{+} = HAsO_{3}^{2-}$	13.41
	$AsO_3^{3-} + 2H^+ = H_2AsO_3^-$	25.52
	$AsO_3^{3-} + 3H^+ = H_3AsO_3$	34.74
	Surface Reactions (Intrinsic Adsorption Constants)	log K ^{int}
	$\equiv Fe^{w.s}OH + H^{+} = \equiv Fe^{w.s}OH_{2}^{+}$	7.29
	$\equiv Fe^{w.s}OH = \equiv Fe^{w.s}O^{-} + H^{+}$	-8.93
	$\equiv Fe^{w}OH + Ca^{2+} = \equiv Fe^{w}OCa^{+} + H^{+}$	-5.85
	$\equiv Fe^{s}OH + Ca^{2+} = \equiv Fe^{s}OHCa^{2+}$	4.97
	$\equiv Fe^{w.5}OH + SO_4^{2-} + H^+ = \equiv Fe^{w.5}SO_4^{-} + H_2O$	7.78
	$\equiv Fe^{w.s}OH + SO_4^{2-} = \equiv Fe^{w.s}OHSO_4^{2-}$	0.79
	$\equiv Fe^{w.s}OH + PO_a^{3-} + 3H^{+} = \equiv Fe^{w.s}H_3PO_a + H_2O$	31.29
	$= Fe^{w.s}OH + PO_4^{3-} + 2H^{+} = = Fe^{w.s}HPO_4^{-} + H_2O$	25.39
	$\equiv Fe^{w,s}OH + PO^{3-} + H^{+} = \equiv Fe^{w,s}PO^{2-}$	17.72
rom: Hering &	[
	$\equiv \text{Fe}^{\text{w,s}}\text{OH} + \text{AsO}_4^{3-} + 3\text{H}^+ = \equiv \text{Fe}^{\text{w,s}}\text{H}_2\text{AsO}_4 + \text{H}_2\text{O}$	29.31
limelech, 1996;	$\equiv Fe^{w.s}OH + AsO_4^{3-} + 2H^+ = \equiv Fe^{w.s}HAsO_4^{-} + H_2O$	23.51
WWARF Report	$= Fe^{w.s}OH + AsO_4^{3-} = = Fe^{w.s}OHAsO_4^{3-}$	10.58
David Reckhow	$\equiv Fe^{ws}OH + AsO_3^{3-} + 3H^* = \equiv Fe^{ws}H_2AsO_3 + H_2O$	40.20

Regulatory Dates I

- 1942, Public Health Service Establishes 50 ppb Standard
- 1975, EPA formalizes 50 ppb Standard
- 1989, EPA misses the First of Several Deadlines for Revising Rule
- June 22, 2000, EPA Proposes MCL of 5 ppb
- January 22, 2001, EPA Publishes Final Rule, MCL of 10 ppb

From presentation by Philip Brandhuber (2001)

David Reckhow CEE 680 #52

Regulatory Dates II

- March 20, 2001, EPA Announces it will "Reassess" Costs and Scientific Issues, Delay Rule 60 Days
- April 23, 2001, EPA Announces Additional Delay of Nine Months
- May 22, 2001, EPA Announces Delay Until February 22, 2002
- July 19, 2001, EPA Request Comment on MCL's of 20, 5 and 3 as Alternative to 10 ppb
- October 31, 2001, EPA announces that As standard will be 10 ppb (effective 2006?)

From presentations by Brandhuber (2001) & Kempic (2001)

David Reckhow

CEE 680 #52

Other new or revised rules expected

- Revised TCR
 - *E. coli* in; fecal coliforms out <5% positive for TC as before
 - Published: Feb 13, 2013 with Apr 1, 2016 effective date
 - http://water.epa.gov/lawsregs/rulesregs/sdwa/tcr/regulation_revisions.cfm
- Revised Pb/Cu Rule
 - New site selection criteria & sampling procedures

Revised LCR: not before 2020

no flushing or removal or aerators

Same 0.015 mg/L & 1.3 mg/L action levels (in 10% of samples)

- Perchlorate (ClO₄⁻)
 - Peer review in 1/2017; Proposed rule is delayed
 - States: MA @ 2μg/L; CA @6μg/L; others advisory @1-18μg/L
- Chlorate (ClO₂-)
 - Could be a problem for on-site hypochlorite generation (Stanford, 2014)
- Hexavalent Chromium
 - · Currently regulated as total Cr
 - Likely carcinogen: Final health assessment: end of 2011
 - Late addition to UCMR 3 (2013-2015)

