

Case study: Lead

- Regulations
 - 0.015 mg/L action level in drinking water
- Sources
 - Natural: lead minerals
 - Industrial: paints
 - Plumbing: service connections, solder, brass alloy faucets
- Health Effects
 - Kidney, nervous system damage

David Reckhow CEE 680 #50

A short history of Lead

- Emperor Nero & others
 - a predilection to lead-tainted diets and suffered from gout and other symptoms of chronic lead poisoning
 - Not only did the Romans drink legendary amounts of wine, but they flavored their wines with a syrup made from simmered grape juice that was brewed in lead pots. The syrup was also used as a sweetener in many recipes favored by Roman gourmands.
 - "One teaspoon of such syrup would have been more than enough to cause chronic lead poisoning," Dr. Nriagu said.

Peter Ustinov as Nero

NY Times: March 17, 1983

David Reckhow

Our continuing love affair with lead

- Used for some of the earliest pressurized water pipes
 - Malleable, plentiful
 - Plumbing and plumbers use Pb
- Used with modern urban water systems
 - Lead service lines esp. 1920s-1940s
 - Lead solder: until 1986
 - · Brass fittings with lead

David Reckhow

Flint Michigan Crisis

- Timeline
 - April 2014: the city stopped getting its water from Detroit as a cost-saving measure and began instead drawing water from the Flint River.
 - High blood lead levels noted in children
 - Water led levels were above standard
 - Oct 16, 2015: Flint switches back to Detroit Water
- Sources
 - EPA website: http://www.epa.gov/flint/flint-drinking-water-documents
 - VPI website: http://flintwaterstudy.org/
 - 12/22/2015 <u>Rachel Maddow video</u>:

David Reckhow

Protection by a CaCO₃ film?

- Calcium carbonate will precipitate when the solubility product is exceeded
 - This occurs at elevated pHs where the equilibrium shifts toward more carbonate
 - Of course there has to be a certain amount of calcium (hardness present as well)
- This film has been shown to protect pipes from corrosion
 - for this reason, high pHs and high alkalinities can help with corrosion control
 - How high should the pH be?

David Reckhow

Langelier Index (LI)

- A measure of the degree of saturation of calcium carbonate in water
 - When a water is exactly in equilibrium with CaCO₃ such that neither dissolution nor precipitation is occurring,
 - LI = 0
 - When CaCO₃ precipitation is occurring, the water is oversaturated and by definition:
 - LI >0
 - So the extent of oversaturation (ie., the LI) is defined as the number of log units of the actual, measured, water pH (pH_{act}) above the theoretical value that gives perfect equilibrium (pH_{sat})

$$LI \equiv pH_{act} - pH_{sat}$$

David Reckhow

CEE 680 #50

17

LI continuted

• The saturation pH can be calculated using the solubility product constant (Kso) and knowing the water's carbonate content from knowledge of the alkalinity

David Reckhow

No assumptions on mass balance

 Returning to the basic solubility, but not requiring that calcium and total carbonates be equal

$$K_{SO} = \left[Ca^{+2}\right]\left[CO_3^{-2}\right]$$
 $K_{SO} = \left[Ca^{+2}\right]\alpha_2C_T$
 $\alpha_2 = \frac{1}{\frac{[H^+]^2}{K_1K_2} + \frac{[H^+]}{K_2} + 1}$
And so at $pH = 6.3 - 10.3$
 $\alpha_2 \approx \frac{1}{\frac{[H^+]}{K_2}} = \frac{K_2}{[H^+]}$
 $K_{SO} = \left[Ca^{+2}\right]\frac{K_2}{[H^+]}C_T$
 $\left[H^+\right] = \left[Ca^{+2}\right]\frac{K_2}{K_{SO}}C_T$

LI (cont)

• Continuing $[H^+] = \left[Ca^{+2}\right] \frac{K_2}{K_{so}} C_T$ $log [H^+] = log \left[Ca^{+2}\right] + log K_2 - log K_{so} + log C_T$ $pH_{sat} = -log \left[Ca^{+2}\right] + pK_2 - pK_{so} - log C_T$

• And now combining with the LI definition $LI \equiv pH_{act} - pH_{sat}$

$$LI = pH_{act} + log[Ca^{+2}] - pK_2 + pK_{so} + logC_T$$

David Reckhow

LI (cont)

• And since in the pH range below 10.3, the alkalinity is mostly due to bicarbonate, we can equate the C_T to the alkalinity

$$LI = pH_{act} + log[Ca^{+2}] - pK_2 + pK_{so} + log[Alk]$$

- And general practice has been to increase pH so that the LI is 0.2 to 1.0
- While CaCO₃ films have been found to inhibit iron corrosion, there is little evidence that a high LI can reduce the level of soluble Pb

David Reckhow

CEE 680 #50

Flint Water Quality – why?

Parameter	Before 4/2014	After 4/2014	units
pН	7.38	7.61	
Hardness	101	183	mg-CaCO ₃ /L
Alkalinity	78	77	mg-CaCO ₃ /L
Chloride	11.4	92	mg/L
Sulfate	25.2	41	mg/L
CSMR	0.45	1.6	mg/mg
Inhibitor	0.35	None	mg-P/L
Larson Ratio	0.5	2.3	

WQ data From MOR and 2014 WQR CSMR = chloride to sulfate mass ratio Larson Ratio = $([Cl^-] + 2[SO_4^{-2}])/[HCO_3^-]$

Sulfate and Chloride

- In bulk water neither sulfate nor chloride can compete well with hydroxide for lead
- Near surface with active galvanic corrosion, pH drops and hydroxide is very low
 - Sulfate forms insoluble PbSO₄ precipitate

$$K_{so} = [Pb^{+2}][SO_4^{-2}] = 1.54x10^{-8}$$

• Chloride forms soluble PbCl+ complex

$$K_1 = \frac{[PbCl^+]}{[Pb^{+2}][Cl^-]} = 59.5$$

David Reckhow

CEE 680 #51

Nguyen et al., 2010; WRF Report 27

Chloramines: a solution to the DBP problem?

• Inorganic chloramines are formed by the reaction of free chlorine with ammonia.

$$NH_3 + HOCI -----> NH_2CI + H_2O$$
 (1)

- Monochloramine is formed very quickly (in minutes)
- Although it is not as powerful an oixidant or disinfectant as free chlorine, it does continue to provide some pathogen protectionl
- It does not continue to produce THMs and most HAAs like free chlorine does
- Therefore, many cities like DC have decided to convert their distribution system disinfectant to chloramines

How to avoid Lead problems

- Optimized corrosion control treatment
 - Control of pH and alkalinity
 - Addition of orthophosphate based corrosion inhibitors
 - Keep oxidized environment
- Minimize changes in distributed water chemistry
- Removal lead from system
 - Lead service lines
 - Lead in plumbing fixtures

David Reckhow

IDWT

41

 The Great Lead Water Pipe Disaster

- Werner Troesken
- 2006 MIT Press

David Reckhow CEE 680 #51

Why did the DC crisis happen?

- Unintended consequences of decisions made to protect public health
- Need to provide clean water to cities
 - Disinfect with chlorine
 - Lead is a great piping material
- Some secondary problems that need fixing carcinogens
 - Solution: Convert chlorine to chloramines?
 - Oops

First, a short history of municipal drinking water

David Reckhow

5

How to avoid Lead problems

- Optimized corrosion control treatment
 - Elevated pH and control of alkalinity
 - Addition of orthophosphate based corrosion inhibitors
- Other guidance
 - Keep oxidized environment
 - Keep chloride to sulfate ratio low
 - Minimize changes in distributed water chemistry
- Removal lead from system
 - Lead service lines
 - Lead in plumbing fixtures

David Reckhow

IDWT

47

Pb (+II): Solubility • Red- PbO(s) log Concentration (M) Pb(OH) $Pb_{T} = 10^{-6}$ From: Aquatic Chemistry Concepts, by Pankow, 1991 David Reckhow CEE 680 #50

Pb: Predominance Equations I

- Again, in general $Pb_{T}={}^{*}K_{so}[H^{+}]^{2}\left(1+\frac{{}^{*}K_{1}}{[H^{+}]}+\frac{{}^{*}K_{1}{}^{*}K_{2}}{[H^{+}]^{2}}+\frac{{}^{*}K_{1}{}^{*}K_{2}{}^{*}K_{3}}{[H^{+}]^{3}}\right)$ Which can reduce to (depending on predominance):
- - For Pb+2

$$Pb_{T} \approx {}^{*}K_{so}[H^{+}]^{2}(1) = 10^{-12.7}[H^{+}]^{2}$$

• For Pb(OH)₂°

• For Pb(OH)₂°
$$Pb_{T} \approx {}^{*}K_{so}[H^{+}]^{2} \left(\frac{{}^{*}K_{1}}{[H^{+}]}\right) = {}^{*}K_{so} {}^{*}K_{1}[H^{+}] = 10^{-20.4}[H^{+}]$$
• For Pb(OH)₂°

$$Pb_T \approx {}^*K_{so}[H^+]^2 \left(\frac{{}^*K_1{}^*K_2}{[H^+]^2}\right) = {}^*K_{so}{}^*K_1{}^*K_2 = 10^{-29.8}$$

David Reckhow

Oxidation Chemistry of Pb

- Oxidation States
 - o, +II, +IV
- Solubility
 - o oxidation state: insoluble
 - Pb(s)
 - +II oxidation state: relatively soluble
 - PbO(s) (red & yellow), Pb(OH)₂(s)
 - +IV oxidation state: essentially insoluble
 - PbO₂(s)

David Reckhow

CEE 680 #50

.....

Pb: Predominance Equations II $PbO_{\underline{2(s)}}$ $2pe = 49.2 + log\{PbO_{2(s)}\} - log\{Pb^{2+}\} - 2log\{H_2O\} - 4pH$ (21.12)PbO_(s) $log{Pb^{2+}} + log{H₂O} = 12.7 - 2pH + log{PbO_(s)}$ (21.16)Pb²⁺ $PbO_{\underline{2}\underline{(s)}}$ $2pe = 36.5 - 2pH + \log\{PbO_{2(s)}\} - \log\{PbO_{(s)}\} -$ (21.17) $\overline{PbO}_{(s)}$ Pb2+ $2pe = -4.26 + \log\{Pb^{2+}\} - \log\{Po_{(s)}\}$ (21.14) $Pb_{(s)}$ PbO_(s) + $log{Pb^{2+}} + log{H₂O} = 12.7 - 2pH + log{PbO_(s)}$ (21.16)Pb²⁺ $PbO_{(s)}$ $2pe + log\{H_2O\} = 8.44 - 2pH + log\{PbO_{(s)}\} - log\{Pb_{(s)}\}$ (21.19) $Pb_{(s)}$ From: Aquatic Chemistry Concepts, by Pankow, 1991 David Reckhow CEE 680 #50

