CEE 680: Water Chemistry

Lecture #49

Redox Chemistry: Predominance Diagrams; spanning the range of pe

(Stumm & Morgan, Chapt.8)

Benjamin; Chapter 9

Chlorine Predominance Diagram

- Features
 - Oxidation state
 - Higher oxidation states (HOCl/OCl-) in upper region
 - Middle oxidation state (Cl₂) in middle at low pH range
 - Chloride in lower region
 - pH divisions
 - Vertical lines at pK_a values

Constants

Conversions


$$pe^{o} \left[\equiv p\varepsilon^{o} \right] = \frac{1}{n} \log K = \frac{1}{0.059} E_{H}^{o}(volts)$$

$$0.059 = \frac{RT \ln(10)}{F}$$

Reaction	Log K	peº	pe ^o (W)	E_H^0 , mV
$NO_3^- + 2e^- + 2H^+ \leftrightarrow NO_2^- + H_2O$	28.57	14.29	7.28	843
$NO_3^- + 8e^- + 10H^+ \leftrightarrow NH_4^+ + 3H_2O$	119.08	14.89	6.14	878
$NO_3^- + 8e^- + 9H^+ \leftrightarrow NH_3(aq) + 3H_2O$	109.83	13.73	5.85	809
$NO_3^- + 3e^- + 4H^+ \leftrightarrow NO(g) + 2H_2O$	48.40	16.13	6.80	952
$2NO_3^- + 10e^- + 12H^+ \leftrightarrow N_2(g) + 6H_2O$	210.34	21.03	12.63	1241
$NO_2(g) + 2e^- + 2H^+ \leftrightarrow NO(g) + H_2O$	53.60	26.80	19.80	1581
$N_2O(g) + 2e^- + 2H^+ \leftrightarrow N_2(g) + H_2O$	59.79	29.89	22.89	1764
$SO_4^{2-} + 8e^- + 9H^+ \leftrightarrow HS^- + 4H_2O$	33.68	4.21	-3.67	248
$SO_4^{2-} + 8e^- + 10H^+ \leftrightarrow H_2S(aq) + 4H_2O$	40.67	5.08	-3.67	299
$SO_4^{2-} + 2e^- + 2H^+ \leftrightarrow SO_3^{2-} + H_2O$	27.16	13.58	6.58	801
$SeO_4^{2-} + 2e^- + 4H^+ \leftrightarrow H_2SeO_3 + H_2O$	36.32	18.16	4.16	1071
$H_3PO_4 + 2e^- + 2H^+ \leftrightarrow H_3PO_3 + H_2O$	-10.10	-5.05	-12.05	-298
$AsO_4^{3-} + 2e^- + 2H^+ \leftrightarrow AsO_3^{3-} + H_2O$	5.29	2.64	-4.36	156
$\text{CrO}_4^{2-} + 3e^- + 8\text{H}^+ \leftrightarrow \text{Cr}^{3+} + 4\text{H}_2\text{O}$	77.00	25.66	7.00	1514
$OCN^- + 2e^- + 2H^+ \leftrightarrow CN^- + H_2O$	-4.88	-2.44	-9.44	ı — 144
$2H^+ + 2e^- \leftrightarrow H_2(g)$	0.00	0.00	-7.00	0
$2H^+ + 2e^- \leftrightarrow H_2(aq)$	3.10	1.55	-5.45	92
$O_2(g) + 4H^+ + 4e^- \leftrightarrow 2H_2O$	83.12	20.78	13.78	1226
$O_2(aq) + 4H^+ + 4e^- \leftrightarrow 2H_2O$	86.00	21.50	14.50	1268
$O_2(aq) + 2e^- + 2H^+ \leftrightarrow H_2O_2(aq)$	26.34	13.17	6.17	777
$\Pi_2 \Theta_2(aq) + 2e^- + 2\Pi^- \leftrightarrow 2\Pi_2 \Theta^-$	39.39	29.00	22.00	1736
$O_3(g) + 2e^- + 2H^+ \leftrightarrow O_2(g) + H_2O$	70.12	35.06	28.06	2069
$\text{Cl}_2(aq) + 2e^- \leftrightarrow 2\text{Cl}^-$	47.20	23.60	23.60	1392
$ClO_3^- + 6e^- + 6H^+ \leftrightarrow Cl^- + 3H_2O$	147.02	24.50	17.50	1446
$HOCl + 2e^- + H^+ \leftrightarrow Cl^- + H_2O$	50.20	25.10	21.60	1481
$ClO_2 + 5e^- + 4H^+ \leftrightarrow Cl^- + 2H_2O$	126.67	25.33	19.73	1495
$ClO_2^- + 4e^- + 4H^+ \leftrightarrow Cl^- + 2H_2O$	109.06	27.27	20.26	1609
$HOBr + 2e^- + H^+ \leftrightarrow Br^- + H_2O$	45.36	22.68	19.18	1338
$2HOBr + 2e^- + 2H^+ \leftrightarrow Br_2(aq) + 2H_2O$	53.60	26.80	20.27	1581
$BrO_3^- + 6H^+ + 6e^- \leftrightarrow Br^- + 3H_2O$ $Al^{3+} + 3e^- \leftrightarrow Al(s)$	146.1 -85.71	24.35 -28.57	17.35 -28.57	1437 -1686
$A1 + 3e \leftrightarrow A1(s)$ $Zn^{2+} + 2e^{-} \leftrightarrow Zn(s)$	-85.71 -25.76	-28.37 -12.88	-28.37 -12.88	-760
$\text{Ni}^{2+} + 2e^{-} \leftrightarrow \text{Ni}(s)$	-23.76 -7.98	-12.88 -3.99	-3.99	-700 -236
$Pb^{2+} + 2e^{-} \leftrightarrow Pb(s)$	-4.27	-2.13	-2.13	-126
$Cu^{2+} + e^{-} \leftrightarrow Cu^{+}$	2.72	2.72	2.72	160
$Cu^{2+} + 2e^{-} \leftrightarrow Cu(s)$	11.48	5.74	5.74	339
$Fe^{3+} + e^{-} \leftrightarrow Fe^{2+}$	13.03	13.03	13.03	769
$Hg_2^{2+} + 2e^- \leftrightarrow 2Hg(1)$	26.91	13.46	13.46	794
$Ag^{+} + e^{-} \leftrightarrow Ag(s)$	13.51	13.51	13.51	797
$Pb^{4+} + 2e^- \leftrightarrow Pb^{2+}$	28.64	14.32	14.32	845
$2Hg^{2+} + 2e^{-} \leftrightarrow Hg^{2+}$	30.79	15.40	15.40	908
$MnO_2(s) + 2e^- + 4H^+ \leftrightarrow Mn^{2+} + 2H_2O$	41.60	20.80	6.80	1227
$Mn^{3+} + e^- \leftrightarrow Mn^{2+}$	25.51	25.51	25.51	1505
$MnO_4^- + 5e^- + 8H^+ \leftrightarrow Mn^{2+} + 4H_2O$	127.82	25.56	14.36	1508
$Co^{3+} + e^- \leftrightarrow Co^{2+}$	33.10	33.10	33.10	1953
CO 16 (7CO	JJ.10	JJ.10	JJ.10	1733

A highly oxidized system

- Chlorine species
 - +I, o and -I oxidation states

Chlorine Predominance Diagram

- Features
 - Oxidation state
 - Higher oxidation states (HOCl/OCl-) in upper region
 - Middle oxidation state (Cl₂) in middle at low pH range
 - Chloride in lower region
 - pH divisions
 - Vertical lines at pK_a values

Iron phases

- From Soil Science
 Literature
 - Pyrite is FeS₂
 - Goethite is FeO(OH)
 - Jarosite is KFe³⁺₃(OH)₆(SO₄)₂

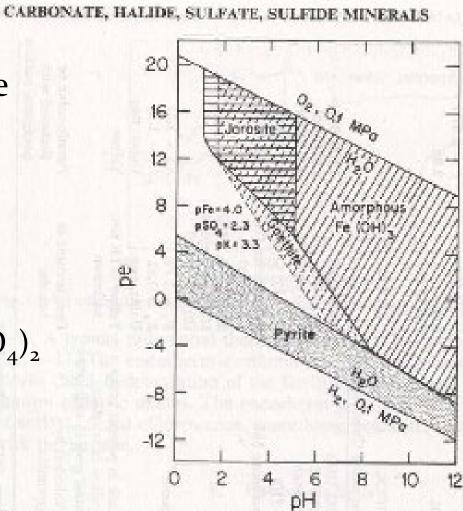
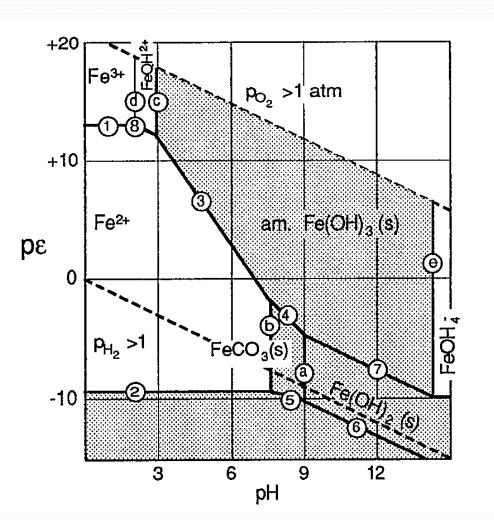
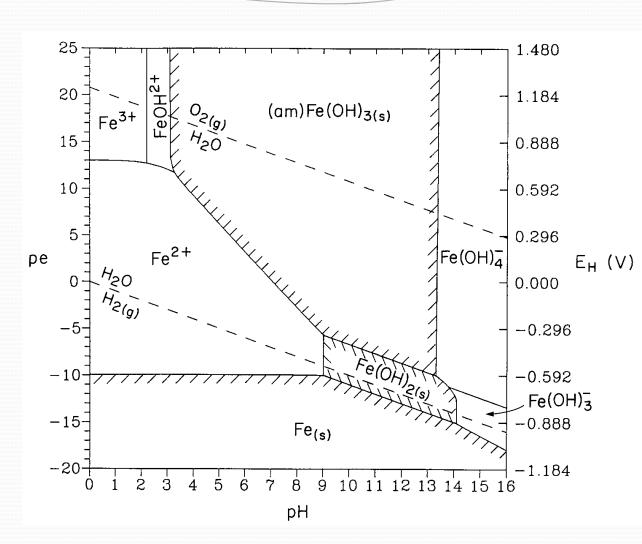



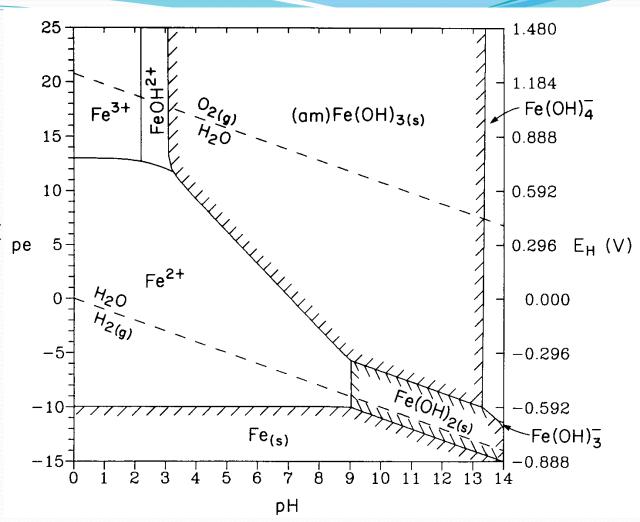
Fig. 6-16. A pH-pe diagram of pyrite, jarosite, amorphous Fe(OH)₃, goe thite, and soluble components at 0.1 MPn total pressure and 25 °C. The activities of solution species are: (Fe²⁺) + (Fe³⁺) = 10⁻⁴, (SO₄⁻¹) = 5 × 10⁻³, and (K⁺) = 5 × 10⁻⁴. Shaded areas represent solid phases. (Diagram after van Breeman, 1982; thermodynamic values for boundaries from Lindsay, 1979).

Iron redox system


- Ferrous Ferric
 - hydroxides

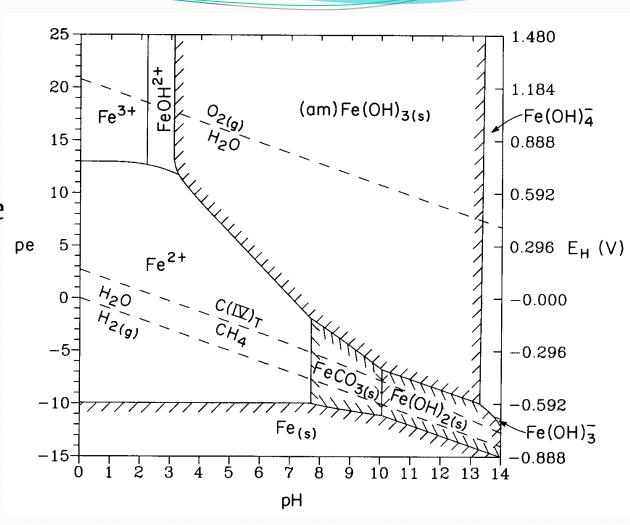
Stumm & Morgan, 1996; Fig. 8.8, pg. 461

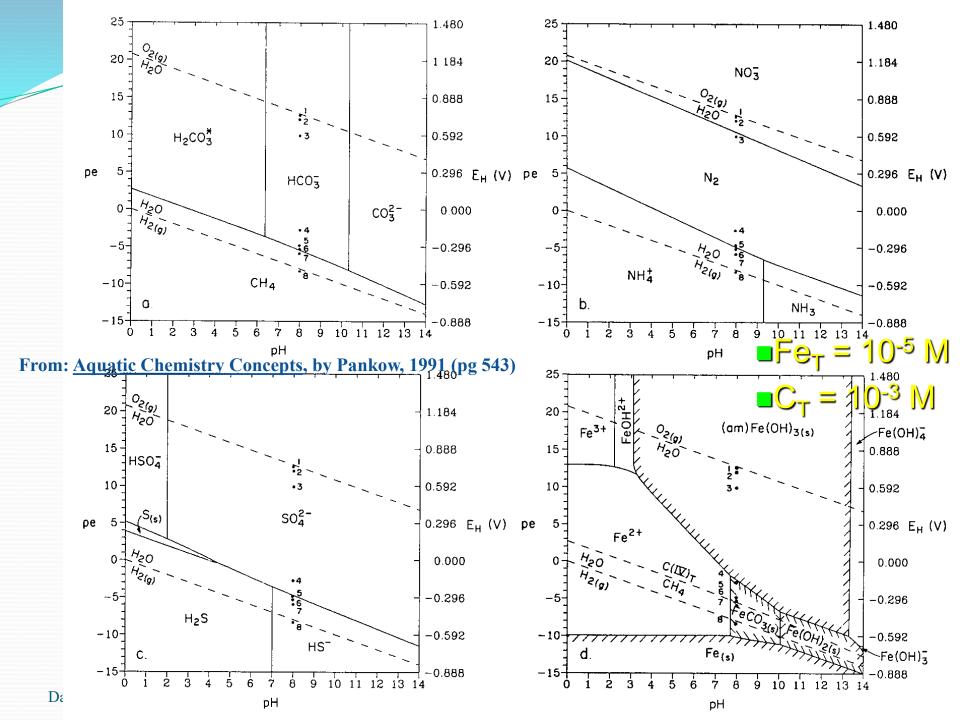
Iron (cont.)


- $Fe_T = 10^{-5} M$
- No carbonates

From: Aquatic Chemistry Concepts, by Pankow, 1991 (pg 535)

Iron (cont.)

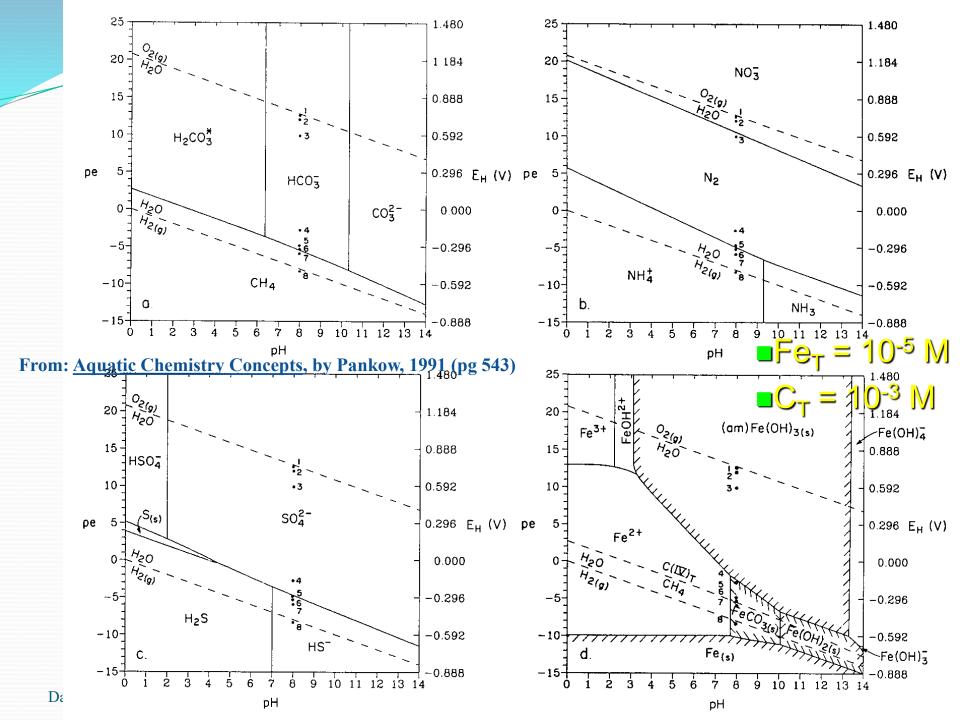

Same as
 previous, but
 pH axis
 limited to 14


From: <u>Aquatic Chemistry Concepts</u>, by Pankow, 1991 (pg. 536)

Iron (cont.)

- $Fe_T = 10^{-5} M$
- 10⁻³ M carbonate

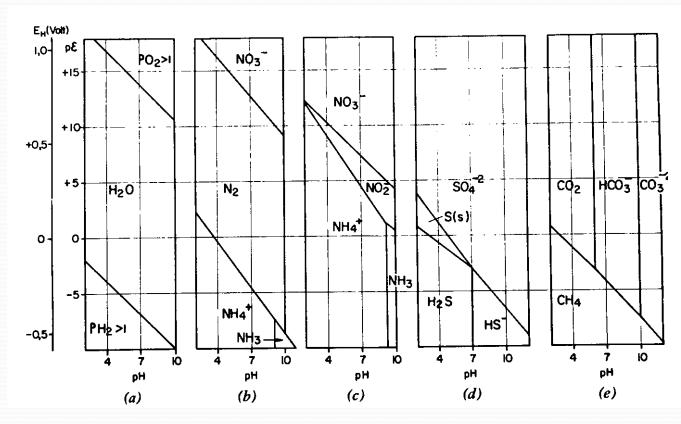
From: <u>Aquatic Chemistry</u> <u>Concepts</u>, by Pankow, 1991


Fully oxygenated to anaerobic

- 1. pe = 12.6. In-situ $p_{O_2} = 0.21$ atm. At equilibrium, the dissolved oxygen will be present as O_2 (and a great deal more of H_2O). Since significant dissolved O_2 will be present, the initial pe is fairly high. The carbon, nitrogen, and sulfur will initially be present primarily as HCO_3^- , NO_3^- , and SO_4^{2-} , respectively. (am)Fe(OH)_{3(s)} will be present. The in-situ p_{H_2} will be exceedingly low.
- 2. pe = 12.1. As the pe is reduced, the first electron acceptor (oxidant) to be reduced in large amounts (but not exclusively) will be the dissolved O_2 , which will be converted to more H_2O . By the time pe = 12.1, the in-situ p_{O_2} will have been reduced to 0.0021 atm.
- 3. pe = 10.0. When essentially all of the O_2 is exhausted, the next electron acceptor to be reduced in large amounts will be the NO_3^- , which will be converted primarily to N_2 . Once the pe drops to 10, the dominant nitrogen species will be N_2 .
- **4.** pe = -2.8. After most of the NO₃⁻ has been exhausted, the next electron acceptor to be reduced in large amounts will be the Fe(III). Indeed, once the pe drops to -2.8, $(am)Fe(OH)_{3(s)}$ is no longer present, and we are inside the FeCO_{3(s)} region. Since $Fe_T \ll C_T$, most of the carbon is still present in solution; in solution, we still have $C(IV)_T \simeq 10^{-3} M$.

From: <u>Aquatic Chemistry</u> <u>Concepts</u>, by Pankow, 1991

- 5. pe = -4.9. After most of the Fe(III) has been exhausted, the next electron acceptor to be reduced in large amounts will be the SO_4^{2-} which will be converted primarily to HS⁻. However, since the N_2/NH_4^+ and HCO_3^-/CH_4 boundaries are only slightly below the SO_4^{2-}/HS^- boundary, as SO_4^{2-} begins to accept electrons in significant amounts, N_2 and HCO_3^- will also begin to accept some electrons. Once the pe reaches -4.9, the dominant sulfur species will be HS^- ; N_2 and HCO_3^- will still be the dominant nitrogen and carbon species, respectively, but significant conversion to NH_4^+ and CH_4 will also have taken place. With $C(IV)_T$ still close to 10^{-3} M, $FeCO_{3(s)}$ would still be present if it were not for the fact that there was so much sulfur in this system. Indeed, since $FeS_{(s)}$ is very insoluble, at pe = -4.9 the $FeCO_{3(s)}$ will have been converted to $FeS_{(s)}$.
- **6.** pe = -5.3. Once the pe reaches -5.3, we drop below the N_2/NH_4^+ line, and NH_4^+ will become the dominant nitrogen species. HCO_3^- will still be the dominant carbon species, but significant amounts of CH_4 will by now also be present.
- 7. $\mathbf{pe} = -6.0$. Once the pe reaches -6.0, we are below the HCO_3^-/CH_4 line, and CH_4 is the dominant carbon species. The bulk of the Fe is present as $FeS_{(s)}$. The level of dissolved Fe(II) is very low and the level of dissolved Fe(III) is exceedingly low.
- 8. pe = -8.4. If the pe continues to be lowered, the last major electron acceptor in the system will be H_2O . Once the pe drops below 8.4, p_{H_2} will be greater than 1 atm. Since we are still above the line given by Eq. (23.119), $Fe_{(s)}$ is not present.


From: Aquatic Chemistry Concepts, by Pankow, 1991

Other redox systems

- Phosphorus
- Nitrogen
- Sulfur
- carbon

Stumm & Morgan, 1996; Fig. 8.9, pg. 461

• To next lecture

