CEE 680: Water Chemistry

Lecture #46

Redox Chemistry: Basic Calculations
(Stumm & Morgan, Chapt.8)

Benjamin; Chapter 9
Fe and NOM increasing

- Acid/base, complexation and redox chemistry

Figure 2. Changes in Fe concentration in (left) European and (right) North American freshwaters between 1990 and 2013. Blue circles represent positive and red circles represent negative trends in Fe concentrations. The size of the circles reflects the magnitude of the changes. Filled circles denote significant trends, and open circles denote nonsignificant changes. Some symbols are overlapping due to water bodies located closely to each other.
Acid rain is the driver

Figure 1. Effects of sulfur (S) deposition and precipitation on Fe mobility. (left) Under a high S deposition scenario, Fe binding to sulfides in soils could reduce Fe export from catchments to surface waters. Similarly, Fe sulfides may accumulate in sediments, resulting in less Fe in the water column of the lake and clearer water. (right) In the wet-climate scenario with less reactive S, more intense precipitation increases runoff from the catchment, flushing rates through lakes, and redox-driven mobilization of Fe in the soils as a result of a raised groundwater table. The resulting increases in Fe associated with organic matter lead to surface water browning.
Widespread Increases in Iron Concentration in European and North American Freshwaters

C. Björneräs1 ID, G. A. Weyhenmeyer2 ID, C. D. Evans3 ID, M. O. Gessner4 ID, H.-P. Grossart5 ID, K. Kangur6 ID, I. Kokorite7, P. Kortelainen8 ID, H. Laudon9 ID, J. Lehtoranta8, N. Lottig10 ID, D. T. Monteith11, P. Nöges12, T. Nöges12, F. Oulehle13 ID, G. Riise14 ID, J. A. Rusak15 ID, A. Räike8, J. Sire16, S. Sterling17 ID, and E. S. Kritzberg1 ID

1Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden, 2Ecology and Genetics/Limnology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 3Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK, 4Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany and Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany, 5Department Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany and Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany, 6Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Estonia, 7Institute of Biology, University of Latvia, Riga, Latvia, 8Finnish Environment Institute, Helsinki, Finland, 9Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden, 10Trout Lake Station, Center for Limnology, University of Wisconsin–Madison, Wisconsin, USA, 11NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK, 12Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia, 13Czech Geological Survey, Klárov 3, Prague, Czech Republic and Global Change Research Institute CAS, Brno, Czech Republic, 14Norwegian University of Life Sciences (NMBU), Ås, Norway, 15Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada, 16Inland Waters Division, Latvian Environmental Geology and Meteorology Centre, Riga, Latvia, 17Hydrology Research Group, Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia, Canada

Correspondence to: C. Björneräs, caroline.bjorneras@biol.lu.se

Standard Half Cell Potentials for Some Oxidation Reactions that Can Occur During Drinking Water Treatment

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Reduction half-reaction</th>
<th>$E^\circ_{\text{red}}, \text{volts}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>$\frac{1}{2}\text{O}_3(\text{aq}) + \text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{O}_2(\text{aq}) + \text{H}_2\text{O}$</td>
<td>2.04</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>$\frac{1}{2}\text{H}_2\text{O}_2 + \text{H}^+ + \text{e}^- \rightarrow \text{H}_2\text{O}$</td>
<td>1.78</td>
</tr>
<tr>
<td>Permanganate</td>
<td>$\frac{1}{3}\text{MnO}_4^- + \frac{4}{3}\text{H}^+ + \text{e}^- \rightarrow \frac{1}{3}\text{MnO}_2(\text{s}) + \frac{2}{3}\text{H}_2\text{O}$</td>
<td>1.68</td>
</tr>
<tr>
<td>Chlorine Dioxide</td>
<td>$\text{ClO}_2 + \text{e}^- \rightarrow \text{ClO}_2^-$</td>
<td>1.15</td>
</tr>
<tr>
<td>Hypochlorous Acid</td>
<td>$\frac{1}{2}\text{HOCl} + \frac{1}{2}\text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{Cl}^- + \frac{1}{2}\text{H}_2\text{O}$</td>
<td>1.49</td>
</tr>
<tr>
<td>Hypochlorite Ion</td>
<td>$\frac{1}{2}\text{OCI}^- + \text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{Cl}^-$</td>
<td>0.90</td>
</tr>
<tr>
<td>Hypobromous acid</td>
<td>$\frac{1}{2}\text{HOBr} + \frac{1}{2}\text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{Br}^- + \frac{1}{2}\text{H}_2\text{O}$</td>
<td>1.33</td>
</tr>
<tr>
<td>Monochloramine</td>
<td>$\frac{1}{2}\text{NH}_2\text{Cl} + \text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{Cl}^- + \frac{1}{2}\text{NH}_4^+$</td>
<td>1.40</td>
</tr>
<tr>
<td>Dichloramine</td>
<td>$\frac{1}{4}\text{NHCl}_2 + \frac{3}{4}\text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{Cl}^- + \frac{1}{4}\text{NH}_4^+$</td>
<td>1.34</td>
</tr>
<tr>
<td>Oxygen</td>
<td>$\frac{1}{4}\text{O}_2(\text{aq}) + \text{H}^+ + \text{e}^- \rightarrow \frac{1}{2}\text{H}_2\text{O}$</td>
<td>1.27</td>
</tr>
<tr>
<td>Oxidation half-reaction</td>
<td>E^o_{ox}, volts</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2}Br^- + \frac{1}{2}H_2O \rightarrow \frac{1}{2}HOBr + \frac{1}{2}H^+ + e^-$</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2}Mn^{+2} + H_2O \rightarrow \frac{1}{2}MnO_2(s) + 2H^+ + e^-$</td>
<td>-1.21</td>
<td></td>
</tr>
<tr>
<td>$Fe^{+2} + 3H_2O \rightarrow Fe(OH)_3(s) + 3H^+ + e^-$</td>
<td>-1.01</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{8}NH_4^+ + \frac{3}{8}H_2O \rightarrow \frac{1}{8}NO_3^- + \frac{1}{4}H^+ + e^-$</td>
<td>-0.88</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2}NO_2^- + \frac{1}{2}H_2O \rightarrow \frac{1}{2}NO_3^- + H^+ + e^-$</td>
<td>-0.84</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{8}H_2S + \frac{1}{2}H_2O \rightarrow \frac{1}{8}SO_4^{2-} + \frac{1}{4}H^+ + e^-$</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2}H_2S \rightarrow \frac{1}{2}S(s) + H^+ + e^-$</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2}HCOO^- \rightarrow \frac{1}{2}CO_2(g) + \frac{1}{2}H^+ + e^-$</td>
<td>+0.29</td>
<td></td>
</tr>
</tbody>
</table>

Standard Half Cell Potentials for Some Oxidation Reactions that Can Occur During Drinking Water Treatment
Oxidation State

- Oxidation state is characterized by an oxidation number
 - the charge one would expect for an atom if it were to dissociate from
 the surrounding molecule or ion (assigning any shared electrons to
 the more electronegative atom).
 - may be either a positive or negative number, usually, an integer
 between -VII and +VII
 - in their elemental forms, e.g. S(s), O₂(aq), atoms have an oxidation
 number of zero.
 - This concept is useful in balancing chemical equations and
 performing certain calculations.
Determining oxidation state

- **Rule:**
 - Sum of the oxidation states of all elements in a molecule or ion equals the charge of that molecule or ion

- **Conventions:**
 - **H** is (+I)
 - Exceptions are H₂, and hydrides
 - **O** is (-II)
 - Exceptions are O₂, and peroxides
 - **N** is (-III) when bound only to C or H
 - **S** is (-II) when bound only to C or H

See Benjamin, pg. 667
Oxidation States

Stumm & Morgan, 1996; Table 8.1, pg. 427

Table 8.1. Oxidation State

Rules for Assigning Oxidation States:

1. The oxidation state of a monoatomic substance is equal to its electronic charge.
2. In a covalent compound, the oxidation state of each atom is the charge remaining on the atom when each shared pair of electrons is assigned completely to the more electronegative of the two atoms sharing them. An electron pair shared by two atoms of the same electronegativity is split between them.
3. The sum of oxidation states is equal to zero for molecules, and for ions is equal to the formal charge of the ions.

Examples:

<table>
<thead>
<tr>
<th>Nitrogen Compounds</th>
<th>Sulfur Compounds</th>
<th>Carbon Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance</td>
<td>Oxidation States</td>
<td>Substance</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>N = −III, H = +I</td>
<td>H₂S</td>
</tr>
<tr>
<td>N₂</td>
<td>N = 0</td>
<td>S₈(s)</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>N = +III, O = −II</td>
<td>SO₃²⁻</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>N = +V, O = −II</td>
<td>SO₄²⁻</td>
</tr>
<tr>
<td>HCN</td>
<td>N = −III, C = +II, H = +I</td>
<td>S₂O₃⁻</td>
</tr>
<tr>
<td>SCN⁻</td>
<td>S = −I, C = +III, N = −III</td>
<td>S₄O₆²⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S₂O₅²⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCO₃⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCOOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C₆H₁₂O₆</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₃OH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C₆H₅COOH</td>
</tr>
</tbody>
</table>

David Reckhow
CEE 680 #46
9
Balancing Equations

- The first step in working with oxidation reactions is to identify the role of the reacting species.
 - At least one reactant must be the oxidizing agent (i.e., containing an atom or atoms that become reduced)
 - At least one must be a reducing agent (i.e., containing an atom or atoms that become oxidized).
- The second step is to balance the gain of electrons from the oxidizing agent with the loss of electrons from the reducing agent.
- Next, oxygen atoms are balanced by adding water molecules to one side or another and hydrogens are balanced with H⁺ ions.
Example: Mn & ozone

- As an example consider the oxidation of manganese by ozone.
 - The substance being oxidized is manganese (i.e., the reducing agent), and the one doing the oxidizing (i.e., being itself reduced) is ozone.

\[Mn + O_3 \rightarrow \text{products} \]

- Next the products formed need to be evaluated.
 - It might be known from experience that reduced soluble manganese (i.e., Mn^{+2}) can be oxidized in water to the relatively insoluble manganese dioxide.
 - It might also be known that ozone ultimately forms hydroxide and oxygen after it becomes reduced.
Mn & Ozone (cont.)

The next step is to determine the oxidation state of all atoms involved.

\[
\text{Mn}^{+2} + O_3 \rightarrow \text{MnO}_2 + O_2 + OH^-
\]
Mn & Ozone (cont.)

- From this analysis, we conclude:
 - manganese is oxidized from \(+II\) to \(+IV\), which involves a loss of 2 electrons per atom
 - ozone undergoes a gain of 2 electrons per molecule, as one of the three oxygen atoms goes from an oxidation state of 0 to -II.
- The two half-reactions can be written as single electron transfers.
 - These half-reactions are balanced by adding water molecules and H\(^+\) ions to balance oxygen and hydrogen, respectively.

\[
\begin{align*}
\frac{1}{2} Mn^{+2} + H_2O & \rightarrow \frac{1}{2} MnO_2 + 2H^+ + e^- \\
\end{align*}
\]
By convention, when hydroxide appears in a half-reaction, additional H^+ ions are added until all of the hydroxide is converted to water. This is done to the reduction half-reaction.

\[
\frac{1}{2} O_3 + H^+ + e^- \rightarrow + \frac{1}{2} O_2 + \frac{1}{2} H_2O
\]
Mn & Ozone (cont.)

- From this point, it is a simple matter of combining the equations and canceling out terms or portions of terms that appear on both sides.

- At the same time, the standard electrode potentials can be combined to get the overall potential.

\[
\frac{1}{2} Mn^{+2} + H_2 O \rightarrow \frac{1}{2} MnO_2(s) + 2H^+ + e^- \quad -1.21 \text{ V } (E_{\text{ox}}^o)
\]

\[
\frac{1}{2} O_{3(aq)} + H^+ + e^- \rightarrow \frac{1}{2} O_2(aq) + \frac{1}{2} H_2 O
+ 2.04 \text{ V } (E_{\text{red}}^o)
\]

\[
\frac{1}{2} O_{3(aq)} + \frac{1}{2} Mn^{+2} + \frac{1}{2} H_2 O \rightarrow \frac{1}{2} O_2(aq) + \frac{1}{2} MnO_2(s) + H^+
+ 0.83 \text{ V } (E_{\text{net}}^o)
\]

\[
\frac{1}{2} O_{3(aq)} + \frac{1}{2} Mn^{+2} + \frac{1}{2} H_2 O \rightarrow \frac{1}{2} O_2(aq) + \frac{1}{2} MnO_2(s) + H^+
+ 0.83 \text{ V } (E_{\text{net}}^o)
\]
Mn & Ozone (cont.)

• Immediately, it is seen that this reaction will proceed toward the right (the E^o_{net} is positive). But how far to the right will it go?
 • To answer this, the previous equation is rearranged to get:

• So for this reaction:

$$K = e^{16.95E^o_{net}}$$

$$K = e^{16.95 \times 0.83} = 1.29 \times 10^6$$
and using the concentration quotient from the reaction stoichiometry,

\[
1.29 \times 10^6 = \left(\frac{O_2(aq)}{O_3(aq)} \right)^{0.5} \left(\frac{MnO_2(s)}{Mn^{2+}} \right)^{0.5} \left(\frac{H^+}{H_2O} \right)^{0.5}
\]

and since the activity of solvents (i.e., water) and solid phases are, by convention, equal to one,

\[
1.29 \times 10^6 = \left(\frac{O_2(aq)}{O_3(aq)} \right)^{0.5} \left(\frac{H^+}{Mn^{2+}} \right)^{0.5}
\]

Furthermore, if the pH is 7.0 and a dissolved oxygen concentration of 10 mg/L and an ozone concentration of 0.5 mg/L is maintained in the contactor, an equilibrium Mn\(^{2+}\) concentration of \(1.8 \times 10^{-25}\) M or about \(10^{-27}\) mg/L can be calculated. Thermodynamic principles therefore indicate that this reaction essentially goes to completion.
Now, knowing that the Mn$^{+2}$ should react essentially completely to form manganese dioxide, it might be important to know if ozone can possibly oxidize the manganese dioxide to a higher oxidation state, i.e. permanganate. To examine this, the above ozone equation must first be combined with the reverse of the permanganate reduction equation:

\[
\frac{1}{2}\text{O}_3(aq) + H^+ + e^- \rightarrow \frac{1}{2}\text{O}_2(aq) + \frac{1}{2}H_2O
\]

\[
\frac{1}{3}\text{MnO}_2 + \frac{2}{3}H_2O \rightarrow \frac{1}{3}\text{MnO}_4^- + \frac{4}{3}H^+ + e^-
\]

\[
\frac{1}{2}\text{O}_3(aq) + \frac{1}{3}\text{MnO}_2 + \frac{1}{3}H_2O \rightarrow \frac{1}{3}\text{MnO}_4^- + \frac{1}{3}H^+ + \frac{1}{2}\text{O}_2(aq)
\]

This allows the net potential to be calculated:

\[
E_{net}^o = E_{ox}^o + E_{red}^o = (-1.68V) + (+2.04V) = +0.36V
\]
Mn & Ozone (cont.)

- Again, this is a favorable reaction. The equilibrium constant is:

 \[\log K = \frac{1}{0.059} E_{net}^{o} = \frac{1}{0.059} (+0.36V) = 6.1 \]

 \[K = 10^{6.1} \]

- The equilibrium quotient can now be formulated directly from the balanced equation. Note that neither manganese dioxide (\(\text{MnO}_2\)) nor water (\(\text{H}_2\text{O}\)) appears in this quotient. This is because both are presumed present at unit activity. Manganese dioxide is a solid and as long as it remains in the system, it is considered to be in a pure, undiluted state. The same may be said for water. As long as the solutes remain dilute, the concentration of water is at its maximum and remains constant.
Mn & Ozone (cont.)

So under typical conditions where the pH is near neutrality (i.e., \([H^+] = 10^{-7}\)), dissolved oxygen is near saturation (i.e., \([O_2(aq)] = 3 \times 10^{-4} \text{M}\)), and the ozone residual is 0.25 mg/L (i.e., \([O_3(aq)] = 5 \times 10^{-6} \text{ M}\)), the expected equilibrium permanganate concentration should be:

\[
K = \left(\frac{[A_{\text{ox}}]^a [B_{\text{ox}}]^b}{[A_{\text{red}}]^a [B_{\text{red}}]^b} \right) = \frac{[\text{MnO}_4^-]^{0.33} [\text{H}^+]^{0.33} [\text{O}_2]^{0.5}}{[\text{O}_3]^{0.5}} = 10^{6.1}
\]
and solving for permanganate

\[\left[MnO_4^- \right]^{0.33} = 3.5 \times 10^7 \]
\[\left[MnO_4^- \right] = 327 \]

Obviously one cannot have 327 moles/liter of permanganate. Nevertheless, this tells us that the system will be forced in this direction so that all of the manganese dioxide would be converted to permanganate. Once the manganese dioxide is gone, the reaction must stop.
\(p\varepsilon \)

- \(p\varepsilon = -\log\{e^-\} \)
- Low \(p\varepsilon \) means:
 - High \(\{e^-\} \)
 - Reducing conditions
 - Tend to donate \(e^- \)
- \(pH = -\log\{H^+\} \)
- Low \(pH \) means:
 - High \(\{H^+\} \)
 - Acidic conditions
 - Tend to donate \(H^+ \)

\(p\varepsilon \) is really a hypothetical construct. There are no free electrons in solution. It is really a measure of the relative tendency to accept or transfer and electron.
Equations with p\(\epsilon\)

- Half reactions as equilibria
- \(\text{Ox} + n\text{e}^- = \text{Red}\)

\[
K = \frac{[\text{Red}]}{[\text{Ox}]} \{\text{e}^-\}^n
\]

\[
\{\text{e}^-\}^n = \frac{1}{K} \frac{[\text{Red}]}{[\text{Ox}]}
\]

\[
n \log \{\text{e}^-\} = -\log K + \log \left(\frac{[\text{Red}]}{[\text{Ox}]} \right)
\]

\[
p\epsilon = \frac{1}{n} \log K - \frac{1}{n} \log \left(\frac{[\text{Red}]}{[\text{Ox}]} \right)
\]

\[
p\epsilon = p\epsilon^o - \frac{1}{n} \log \left(\frac{[\text{Red}]}{[\text{Ox}]} \right)
\]
• To next lecture