Hydroxo complexes

- 10^{-4}M Cd_T
- Figure 8.2, pg.369 in Benjamin
Chloride Complexes

- 10^{-4}M Cd\(_\text{T}\)
- Low pH (no OH complexes)
 - Figure 8.5, pg.376 in Benjamin

Mixed OH, Cl complexes

- 10^{-4}M Cd\(_\text{T}\); [Cl\(-\)] = 0.5M
 - Figure 8.6, pg.379 in Benjamin
3D Surface: Cl, OH complexes

- Fig 8.7 in Benjamin

Slice shown in Fig. 8.6

Cd(OH)$_2$ Precipitate

- no [Cl$^-$]

- Figure 8.12, pg. 401 in Benjamin
Cd(OH)$_2$ (s) with Cl$^-$

- $\{\text{Cl}^-\}=0.5\text{M}$
- Figure 8.13, pg.403 in Benjamin

Cd limited; no Carbonate

- $10^{-4}\text{M} \text{ Cd}^+$
- Cd(OH)$_2$ (s) allowed
- Figure 8.19, pg.421 in Benjamin

Not really “concentration”, more accurately the mass of precipitate per L solution
CdCO$_3$ (s) low C_T

- $C_T=10^{-3} M$
- Figure 8.15, pg.406 in Benjamin

CdCO$_3$ (s) High C_T

- $C_T=10^{-1} M$
- Figure 8.17, pg.409 in Benjamin
CdCO₃ (s) Open

- pCO₂ = 10⁻³.₅
- Figure 8.18, pg. 410 in Benjamin

Solid formation
- Open system
Dual Solids

- Figs 8.21 & 8.22

Open System

- Equilibrium with $\text{CdCO}_3(s)$
- Equilibrium with $\text{Cd(OH)}_2(s)$
- Both solids supersaturated
- Neither solid supersaturated

Closed System; $C_T = 10^{-3} \text{M}$

- Cd^{2+} limited; no Carbonate
- $10^{-4} \text{M} \text{Cd}_T$
- $\text{Cd(OH)}_2(s)$ allowed
- Figure 8.19, pg. 421 in Benjamin

Not really “concentration”, more accurately the mass of precipitate per L solution
Cd limited; Closed System

- $10^{-4} M \text{Cd}_T$
- $10^{-3} \text{ CO}_3^2_T$
- Cd(OH)$_2$ (s) & CdCO$_3$ (s) allowed

- Figure 8.23, pg.428 in Benjamin

Not really “concentration”, more accurately the mass of precipitate per L solution

3D, 4D, 5D?

- Fig 8.7 in Benjamin
With S^{-2}, low pH

Stumm & Morgan, 1996, Figure 7.19a, pg. 405

With S^{-2}, high pH

Stumm & Morgan, 1996, Figure 7.19c, pg. 406
To next lecture