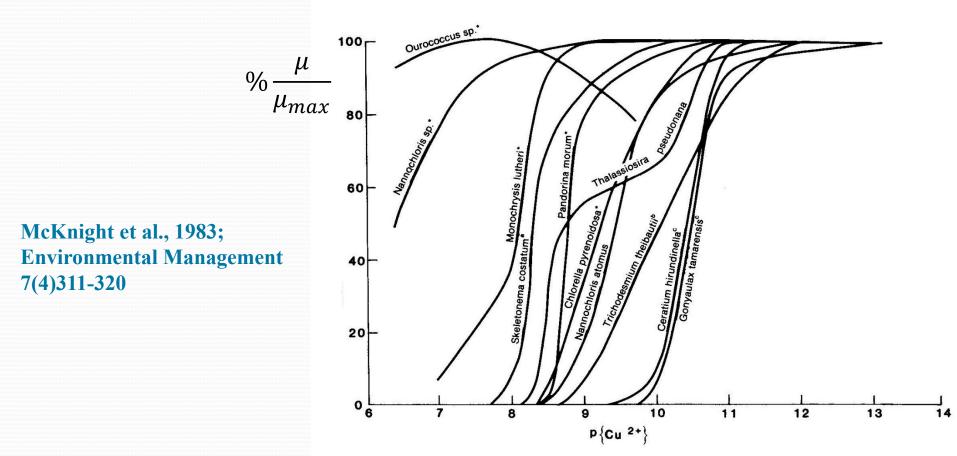
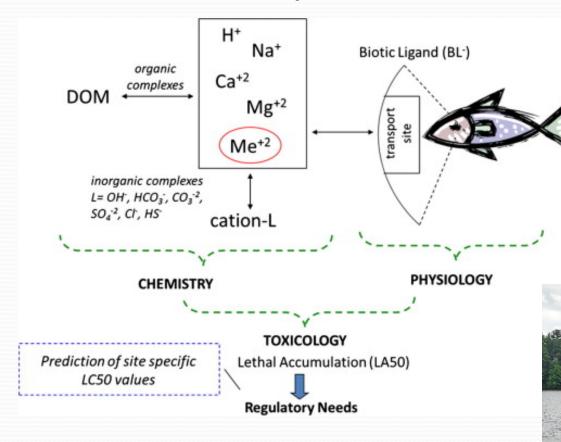


CEE 680: Water Chemistry

Lecture #32 <u>Coordination Chemistry</u>: Case Studies: NTA (cont.)

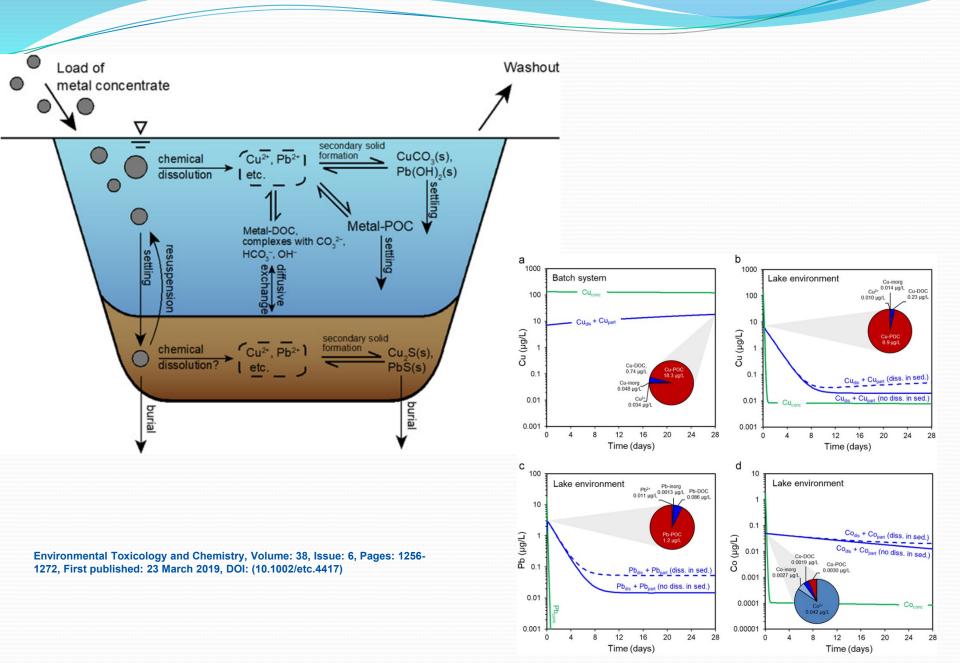
> (Stumm & Morgan, Chapt.6: pg.317-319) Benjamin; Chapter 8.1-8.6


Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia


Environmental Toxicology and Chemistry, Volume: 20, Issue: 10, Pages: 2397-2402

Algae and Copper

- Fresh and salt water algae
- Depends on Cu⁺² ion: 10⁻⁷M seems to work for most


Add CuSO₄

Smith et al., 2015, Applied Geochemistry 57:55

Modeling the Fate of Metal Concentrates in Surface Water

Copper – NTA problem

- NTA: nitrilotriacetate
 - Used as a substitute "builder" in place of phosphate
 - Good example of moderately strong ligand
- Research interests: 70's & 80's
 - General Review
 - Perry et al., 1984 [Wat. Res., 18(3)255]
 - Other Aspects
 - Photochemistry: e.g., Langford et al., 1973 [ES&T 7(9)820]
 - Biodegradation: e.g., Kuhn et al., 1987 [Wat. Res. 21(10)1237], Vanbriesen et al., 2000 [ES&T 34(16)3346]
 - Bioavailability of bound metals: e.g., Bressan & Brunetti, 1988 [Wat. Res. 22(5)553]

See: Knud-Hansen Paper

 CH_2COOH $-CH_2COOH$ CH_2COOH

Cu-NTA II

• Thermodynamics (20°C)

- Acid/Base
 - $H_3NTA = H^+ + H_2NTA^-$
 - $H_2NTA^- = H^+ + HNTA^{-2}$
 - $HNTA^{-2} = H^+ + NTA^{-3}$
- Cu complex
 - $Cu^{+2} + NTA^{-3} = CuNTA^{-3}$
 - Others are rather weak
 - CuHNTA

 $pK_1 = 1.6$ $pK_2 = 3.0$ $pK_3 = 10.3$

$$p\beta_1 = -13.0$$

TABLE 5-10 Variation of Metal Complexation by NTA with NTA Concentration at pH 8

From: Snoeyink & Jenkins, 1980 Total Concentration		Log Formation	Percentage of Total Metal Present as Indicated Complex at Stated NTA Concentration		
С _{т,х} <u>М</u>	Complex Species	Constant of	$NTA = 10^{-7} M$	$NTA = 3 \times 10^{-6} M$	$NTA = 2 \times 10^{-4} M$
$Cu(II) = 2 \times 10^{-6}$ $Pb(II) = 3 \times 10^{-7}$ $Ni(II) = 10^{-7}$	CuNTA- PbNTA- NiNTA-	13 11.8 11.3	4 2	82 80	100 100
$Fe(III) = 2 \times 10^{-6}$	Fe(OH)NTA ⁻ Fe(OH) ₂ NTA ²⁻	10.9 3.1	0.4	60 34	100 100
$Zn(II) = 1.5 \times 10^{-6}$ $H^+ = 10^{-8}$	ZnNTA- HNTA2-	10.4 10.3	0.2 0	20 0	100 9
${ m Mn(II)} = 2 imes 10^{-6} \ { m Ca(II)} = 10^{-3}$	MnNTA- CaNTA-	7.4 6.4	0 0	0 <0.1	100 17
$Mg(II) = 2.5 \times 10^{-4}$ $Sr(II) = 2 \times 10^{-6}$	MgNTA - SrNTA -	5.4 5.0	0 0	0	2 0
$B\alpha(II) = 1.5 \times 10^{-7}$ $N\alpha(I) = 5 \times 10^{-4}$	BaNTA- NaNTA ²⁻	4.8 2.2	0	0	0

Source: C. W. Childs, Proc. 14th Conf. Great Lakes Res., 198–210 (1971). Intl. Assoc. Great Lakes Res. (Reprinted by permission of the International Association for Great Lakes Research.)

Cu-NTA III

- Specific problem
 - $Cu_T = 10^{-4} M$ 6.35 mg/L
 - $NTA_T = 10^{-4} M$ 19.1 mg/L
- Notes:
 - this is a much higher concentration of NTA than is generally found, but it can be used to represent background natural organic matter
 - Copper concentrations may sometimes be this high when used as an algicide
 - We are ignoring other complexes such as copper hydroxides or carbonates

Cu-NTA IV

- Mass Balance Equations
 - $Cu_T = [Cu^{+2}] + [CuNTA^{-}]$
 - $NTA_T = [CuNTA^-] + [H_3NTA] + [H_2NTA^-] + [HNTA^{-2}] + [NTA^{-3}]$
- Definition: total free concentration (TF) is that which is unbound to any metal except H⁺
 - $NTA_T = [CuNTA^-] + NTA_{TF}$

Cu-NTA V

- Equilibria
 - Acid/base

Complexation

$$\alpha_{3} \equiv \frac{[NTA^{-3}]}{NTA_{TF}}$$
$$= \left(1 + \frac{[H^{+}]}{K_{3}} + \frac{[H^{+}]^{2}}{K_{2}K_{3}} + \frac{[H^{+}]^{3}}{K_{1}K_{2}K_{3}}\right)^{-1}$$

$$\beta_1 = \frac{[CuNTA^-]}{[Cu^{+2}][NTA^{-3}]}$$

Cu-NTA VI

Substitute mass balance and alpha equations into the beta equation

$$\beta_{1} = \frac{[CuNTA^{-}]}{[Cu^{+2}][NTA^{-3}]} = \frac{Cu_{T} - [Cu^{+2}]}{[Cu^{+2}]\alpha_{3}NTA_{TF}}$$
$$= \frac{Cu_{T} - [Cu^{+2}]}{[Cu^{+2}]\alpha_{3}(NTA_{T} - [CuNTA^{-}])}$$
$$= \frac{Cu_{T} - [Cu^{+2}]}{[Cu^{+2}]\alpha_{3}(NTA_{T} - (Cu_{T} - [Cu^{+2}]))}$$

Cu-NTA VII

• Now solve, noting that $Cu_T = NTA_T$

$$\beta_{1} = \frac{Cu_{T} - [Cu^{+2}]}{[Cu^{+2}]\alpha_{3}(NTA_{T} - (Cu_{T} - [Cu^{+2}]))}$$
$$= \frac{Cu_{T} - [Cu^{+2}]}{[Cu^{+2}]\alpha_{3}[Cu^{+2}]}$$

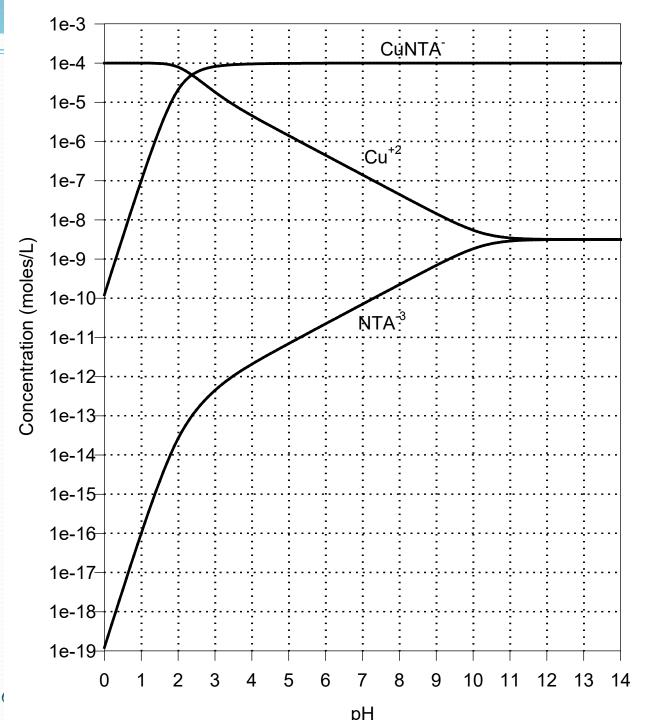
 Which gives us a quadratic which can be solved for a given pH

$$\alpha_3 \beta_1 [Cu^{+2}]^2 + [Cu^{+2}] - Cu_T = 0$$

Cu-NTA VIII

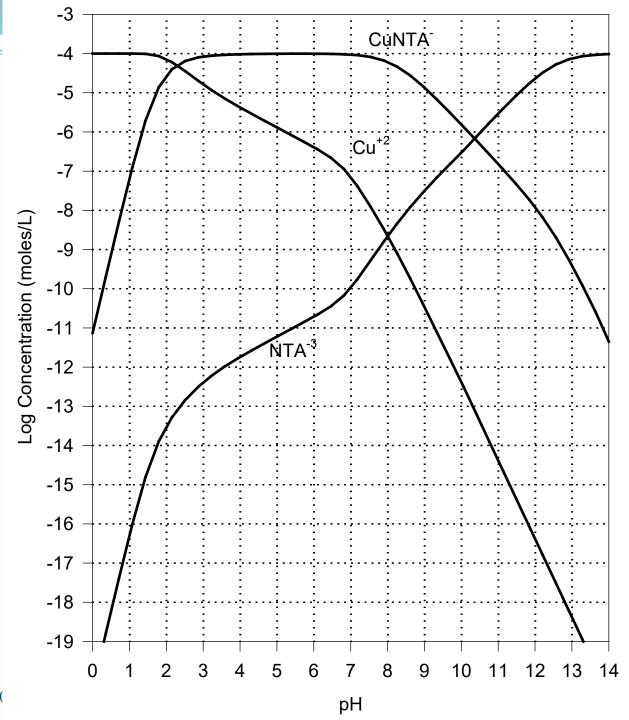
• Then determine other species from the free copper

$$[CuNTA^{-}] = Cu_{T} - [Cu^{+2}]$$


$$NTA_{TF} = NTA_{T} - [CuNTA^{-}]$$

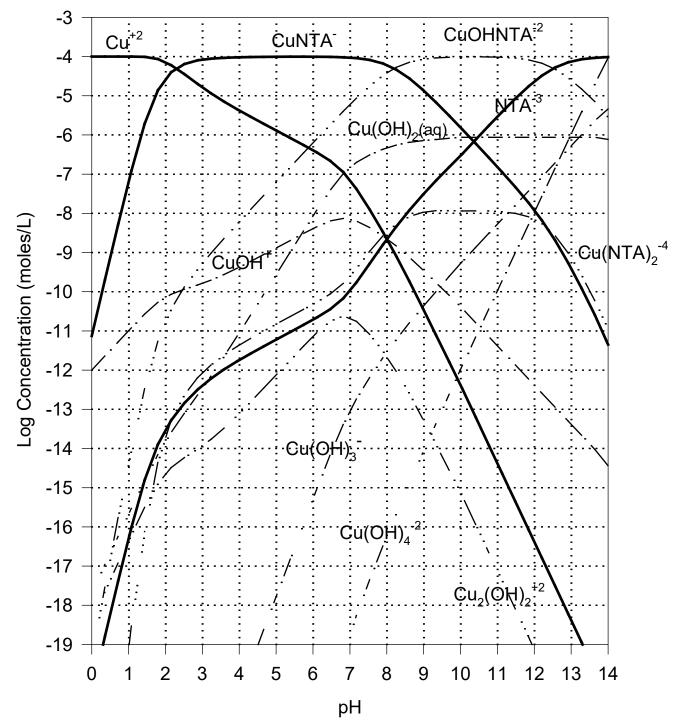
$$[NTA^{-3}] = \alpha_{3}NTA_{TF}$$

• Can use a spreadsheet to calculate α_3 versus pH, and then calculate the other species


Cu-NTA IX

- Figure shows impact of ligand speciation on extent of complexation
- Same thing happens with fulvic acid

CEE (



David Reckhow

CEE 68(

David Reckhow

