CEE 680: Water Chemistry

Lecture #27

Coordination Chemistry: Hydroxides & oxides

(Stumm & Morgan, Chapt.6: pg.272-275)

Benjamin; Chapter 8.1-8.6

Elemental abundance in crust

O

• Si

Al

• Fe

Ca

Na

Mg

• K

• Ti

H

• P

Mn

• F

Zinc

- An essential metal
 - Needed for certain enzyme, e.g., alcohol dehydrogenase
 - Associate with a number of diseases
- Only one oxidation state (+2)
 - Electrons: 3d10, 4s2 (like Mg: 3s2)
- Uses in plumbing
 - Galvanized steel/iron coat of Zn protects from oxidation
 - Now mostly for mains and connections, not premise
 - Copper Alloys
 - Brass (Cu, Zn & <2% Pb),
 - Bronze (Cu, ~12% Sn, & others)

Hydrolysis

- Metal accepts an electron from water and releases or repels a proton
 - Example: Zinc
 - First step
 - $Zn(H_2O)_6^{+2} = Zn(H_2O)_5OH^+ + H^+$

$$^*K_1 = \frac{[Zn(OH)^+][H^+]}{[Zn^{+2}]}$$

- Second step
 - $Zn(H_2O)_5OH^+ = Zn(H_2O)_4(OH)_2^O + H^+$

$$^{*}K_{2} = \frac{[Zn(OH)_{2}]H^{+}}{[ZnOH^{+}]}$$

Hydrolysis (cont.)

- Zinc example expressed as hydroxide formation
 - First step
 - $Zn(H_2O)_6^{+2} + OH^- = Zn(H_2O)_5OH^+ + H_2O$

$$K_1 = \frac{\left[Zn(OH)^+\right]}{\left[Zn^{+2}\right]\left[OH^-\right]}$$

- Second step
 - $Zn(H_2O)_5OH^+ + OH^- = Zn(H_2O)_4(OH)_2^{o} + H_2O$

$$K_2 = \frac{\left[Zn(OH)_2\right]}{\left[ZnOH^+\right]\left[OH^-\right]}$$

Hydrolysis (cont.)

Converting between the two forms

$$Zn(H_2O)_6^{+2} + OH^- = Zn(H_2O)_5OH^+ + H_2O$$

 $H_2O = H^+ + OH^-$

$$Zn(H_2O)_6^{+2} = Zn(H_2O)_5OH^+ + H^+$$

$$K_1 = \frac{\left[Zn(OH)^+\right]}{\left[Zn^{+2}\right]\left[OH^-\right]}$$

$$K_{w} = [H^{+}][OH^{-}]$$

$${^*K_1} = \frac{\left[Zn(OH)^+\right]H^+}{\left[Zn^{+2}\right]}$$
$$= K_1K_w$$

Cumulative stability constants

- β describes the equilibrium between any given complex and its component metal and ligands
 - is the product of the successive K's

$$\beta_2 = K_1 K_2 = \frac{[Zn(OH)_2]}{[Zn^{+2}][OH^-]^2}$$

Which describes the following equilibrium

$$Zn(H_2O)_6^{+2} + 2OH^- = Zn(H_2O)_4(OH)_2 + 2H_2O$$

Cumulative stability constants (cont.)

- And *β is the form of β which is in terms of H+, rather than OH⁻
 - is the product of the successive *K's

$$^*\beta_2 = ^*K_1^*K_2 = \frac{[Zn(OH)_2][H^+]^2}{[Zn^{+2}]}$$

Which describes the following equilibrium

$$Zn(H_2O)_6^{+2} = Zn(H_2O)_4(OH)_2 + 2H^+$$

• And:

$$^*\beta_2 = \beta_2 (K_w)^2$$

Cumulative stability constants (cont.)

So, in general:

$$\beta_{m} = \prod_{x=1}^{x=m} K_{x} = \frac{\left[Me(OH)_{m}^{+(n-m)}\right]}{\left[Me^{+n}\right]\left[OH^{-}\right]^{m}}$$

• And:

$$^*\beta_m = \prod_{x=1}^{x=m} {^*K_x} = \frac{[Me(OH)_m^{+(n-m)}]H^+]^m}{[Me^{+n}]}$$

• To next lecture