

Alkalinity, C_T and pH

- Three types of problems are covered
 - Adding treatment chemicals to water
 - e.g., Soda Ash, Caustic, chlorine
 - Blending of waters
 - e.g., a surface water with a groundwater
 - Impacts of "internal" processes
 - · The photosynthesis problem
- In each we ask about the final pH, Alkalinity and sometimes the C_T or carbonate species

David Reckhow CEE 680 #23

Blending of Waters

- Water A
 - $C_T = 8 \text{ mM}$
 - Alk = 300 mg/L
 - pH = ?
- Water B
 - $C_T = 4 \text{ mM}$
 - Alk = 100 mg/L
 - pH ?
- 50/50 Blend

David Reckhow CEE 680 #23

In-Class Practice

- For a closed system, what is the pH of:
 - 10⁻³ M solution of H₂CO₃
 - 10⁻³ M solution of NaHCO₃
 - 10⁻³ M solution of Na₂CO₃
- For an open system, what is the pH of:
 - 10⁻³ M solution of H₂CO₃
 - 10⁻³ M solution of NaHCO₃
 - 10⁻³ M solution of Na₂CO₃

David Reckhow CEE 680 #24

12

More practice

- What is the pH of a blend of the following:
 - 1 MGD of pH 6.5 water with a Alkalinity of 50 mg/L
 - 0.5 MGD of pH 8.5 water with an Alkalinity of 500 mg/L

$$Alk = (\alpha_1 + 2\alpha_2) \frac{K_H p_{CO_2}}{\alpha_0} + [OH^-] - [H^+]$$

$$Alk = (\alpha_1 + 2\alpha_2)C_T + [OH^-] - [H^+]$$

David Reckhow

CEE 680 #24

