

# **CEE 680: Water Chemistry**

Lecture #23 <u>Dissolved Carbon Dioxide</u>: Open & Closed Systems IV (Stumm & Morgan, Chapt.4) Benjamin; Chapter 7

#### Conservation of Alk, C<sub>T</sub>

- If you know any 2 of the following, you can calculate the 3rd
  - Alkalinity

$$4lk = (\alpha_1 + 2\alpha_2)C_T + [OH^-] - [H^+]$$

- pH
- $C_T \text{ or } p_{CO_2}$
- $Alk = (\alpha_1 + 2\alpha_2) \frac{K_H p_{CO_2}}{\alpha_0} + [OH^-] [H^+]$
- Conservative substances
  - Closed Systems
    - Alkalinity & C<sub>T</sub>
  - Open Systems
    - Alkalinity

To solve these problems requires a **high level of precision** as Alk is often close in value to  $C_T$ , and the difference becomes very important

# Alkalinity, $C_T$ and pH

- Three types of problems are covered
  - Adding treatment chemicals to water
    - e.g., Soda Ash, Caustic, chlorine
  - Blending of waters
    - e.g., a surface water with a groundwater
  - Impacts of "internal" processes
    - The photosynthesis problem
- In each we ask about the final pH, Alkalinity and sometimes the C<sub>T</sub> or carbonate species

#### **Addition of Treatment Chemicals**

| Water                                        | рН  | <b>С<sub>т</sub> (mM)</b> | Alk<br>(meq/L) | Acy<br>(meq/L) |
|----------------------------------------------|-----|---------------------------|----------------|----------------|
| " <b>A</b> "                                 | 6.5 | 1.7                       | 1              | 2.4            |
| A+ 0.7mM<br>NaOH                             | 8.3 | 1.7                       | 1.7            | 1.7            |
| A + 0.7mM<br>Na <sub>2</sub> CO <sub>3</sub> | 8.3 | 2.4                       | 2.4            | 2.4            |

Assumes a closed system; now determine the composition of each in an open system; Also recall:  $Alk_{tot} + Acy_{tot} = 2C_T$ 

### **Chlorine problem**

- Starting water
  - pH=8, Alkalinity = 82.5 mg-CaCO<sub>3</sub>/L, NH<sub>3</sub>-N=3.5 mg/L
    - Alk=1.65 meq/L, NH<sub>3</sub>-N=0.25 mM
- Use breakpoint chlorination to remove ammonia-N
  - $2NH_3 + 3Cl_2 = N_2(g) + 6H^+ + 6Cl^-$
- How much NaHCO<sub>3</sub> and NaOH must be added to reach pH 9.0 and 2.0 mM C<sub>T</sub>?

Snoeyink & Jenkins, example 4-39, pg.188

**Deffeyes** Diagram  $Alk = (\alpha_1 + 2\alpha_2)C_T + [OH^-] - [H^+]$ 

- For 15°C, closed system (has C<sub>T</sub>, not p<sub>CO2</sub>)
  - Snoeyink & Jenkins, pg187
  - Stumm & Morgan, pg 177
- Answer to previous problem
  - 0.35 mM NaHCO<sub>3</sub>
  - 0.75 mM NaOH



Ken Deffeyes

Princeton

# Nomograph

Redrawn Deffeyes diagram

From
Benjamin,
2002

• Pg. 275



### **Blending of Waters**

- Water A
  - $C_T = 8 \text{ mM}$
  - Alk = 300 mg/L
  - pH = ?
- Water B
  - $C_T = 4 \text{ mM}$
  - Alk = 100 mg/L
  - pH ?
- 50/50 Blend



# Nomograph

#### Redrawn Deffeyes diagram

From
Benjamin,
2002

• Pg.275





David Reckhow

CEE 680 #23

#### **In-Class Practice**

- For a closed system, what is the pH of:
  - $10^{-3}$  M solution of  $H_2CO_3$
  - $10^{-3}$  M solution of NaHCO<sub>3</sub>
  - $10^{-3}$  M solution of Na<sub>2</sub>CO<sub>3</sub>
- For an open system, what is the pH of:
  - $10^{-3}$  M solution of  $H_2CO_3$
  - 10<sup>-3</sup> M solution of NaHCO<sub>3</sub>
  - $10^{-3}$  M solution of  $Na_2CO_3$

#### More practice

- What is the pH of a blend of the following:
  - 1 MGD of pH 6.5 water with a Alkalinity of 50 mg/L
  - 0.5 MGD of pH 8.5 water with an Alkalinity of 500 mg/L

$$Alk = (\alpha_1 + 2\alpha_2) \frac{K_H p_{CO_2}}{\alpha_0} + [OH^-] - [H^+]$$

 $Alk = (\alpha_1 + 2\alpha_2)C_T + [OH^-] - [H^+]$ 











David Reckhow

