CEE 680: Water Chemistry

Lecture #22

<u>Dissolved Carbon Dioxide</u>: Introduction to Open Systems

(Stumm & Morgan, Chapt.4)

Benjamin; Chapter 7

Lab Mystery

• Lab crime scene?

10⁻³ M NaOH

Spring Break fun!

CEE 680 #22

Topics Covered

- Log C vs. pH diagram
 - problems
 - 10⁻²M NaHCO₃ solution left on bench over weekend
- Conservation of Alkalinity and C_T
 - closed/open systems
 - photosynthesis problem

The Closed Carbonate System

Tableaux

	Components		H ₂ CO ₃	H⁺	Log K
	Ø		0	0	0
	Species	HCO ₃ -	1	(-1)	-6.35
	Spe	CO ₃ -2	1	-2	-16.68
		OH-	0	-1	-14
		H⁺	0	1	0
	Total		10 ⁻³	0	
$10^{-6.35}$		$[O_3^-][H^+]$ $[I_2CO_3]$		<u>/</u>	
		 	$= [H_2CO_3]$	H^+	$1^{-1}10^{-6.35}$

Open System

- [H₂CO₃] is constant, but C_T is not constant
 - Determined only by the partial pressure of CO₂
 - CO₂ (g) = CO₂(aq)
 CO₂ (aq) + H₂O = H₂CO₃*

$$[CO_2(aq)] + [H_2CO_3] \equiv [H_2CO_3^*]$$

$$[H_2CO_3^*] = K_H p_{CO_2}$$

$$10^{-1.5} \text{ M/atm}$$

$$K_H = \frac{[H_2CO_3]}{p_{CO_2}}$$

$$10^{-3.5} \text{ atm}$$

Typically, for the bulk atmosphere; at least it was

Atmospheric CO, at Mauna Loa Observatory

Gas phase concentrations

Ideal Gas Law

$$PV = nRT$$

Allows one to convert between gas-phase concentration in moles/L (C_G) and partial pressure
 (P)

 $c_G \equiv \frac{n}{V} = \frac{P}{RT}$

• And the mole fraction of substance "i" (y_i) is related to partial pressure of "i" (P_i) by:

$$y_i = \frac{P_i}{P_{total}}$$

Open Systems

In general the bicarbonate is determined from:

$$K_{1} = \frac{[HCO_{3}^{-}][H^{+}]}{[H_{2}CO_{3}^{*}]}$$

$$[HCO_{3}^{-}] = K_{1}[H^{+}]^{-1}[H_{2}CO_{3}^{*}]$$

$$[HCO_{3}^{-}] = K_{1}[H^{+}]^{-1}K_{H}p_{CO_{2}}$$

$$\log[HCO_{3}^{-}] = \log K_{1} + pH + \log K_{H} + \log p_{CO_{2}}$$

$$= -7.8 + pH + \log p_{CO_{2}}$$

• And when p_{CO_2} is $10^{-3.5}$, then

$$\log[HCO_3^-] = -11.3 + pH$$

Open Systems

In general the carbonate is determined from:

$$K_{2} = \frac{[CO_{3}^{-2}][H^{+}]}{[HCO_{3}^{-}]}$$

$$[CO_{3}^{-2}] = K_{2}[H^{+}]^{-1}[HCO_{3}^{-}]$$

$$[CO_{3}^{-2}] = K_{2}[H^{+}]^{-1}K_{1}[H^{+}]^{-1}K_{H}p_{CO_{2}}$$

$$[CO_{3}^{-2}] = \log K_{2}[H^{+}]^{-1}K_{1}[H^{+}]^{-1}K_{H}p_{CO_{2}}$$

$$\log[CO_{3}^{-2}] = \log K_{2} + pH + \log K_{1} + pH + \log K_{H} + \log p_{CO_{2}}$$

$$= \log K_{1}K_{2} + 2pH + \log K_{H} + \log p_{CO_{2}}$$

$$= -18.1 + 2pH + \log p_{CO_{2}}$$

• And when p_{CO_2} is $10^{-3.5}$, then

$$\log[CO_3^{-2}] = -21.6 + 2pH$$

Open

Problems: open & closed

- Example #1: 10⁻²M KOH
 - What is initial pH?
 - What is pH after equilibrium with CO₂?
- Example #2: 10⁻²M NaHCO₃
 - What is initial pH?
 - What is pH after equilibrium with CO₂?

8.3

93

Charge Balance & Alk

Major Cation Charge = Major Anion Charge

$$C_{B} = \begin{bmatrix} Na^{+} + K^{+} + 2Ca^{+2} + 2Mg^{+2} \\ + H^{+} \end{bmatrix} = \begin{bmatrix} Cl^{-} + NO_{3}^{-} + 2SO_{4}^{-2} \end{bmatrix} C_{A} + HCO_{3}^{-} + 2CO_{3}^{-2} + OH^{-}$$

• And simplifying:

$$C_{B} - C_{A} = HCO_{3}^{-} + 2 CO_{3}^{-2} + OH^{-} - H^{+}$$

$$\equiv Alkalinity$$

Now combining with equilibria

$$C_B - C_A \equiv Alk \equiv (\alpha_1 + 2\alpha_2)C_T + K_w/[H^+] - H^+$$

• To next lecture