CEE 680: Water Chemistry

Lecture #21

<u>Dissolved Carbon Dioxide</u>: Closed & Open Systems

(Stumm & Morgan, Chapt.4)

Benjamin; Chapter 5.4 & 7

Major homogeneous reactions

- Gas transfer
- Acid/Base Reactions
 - Diprotic Acid
 - Fully-protonated form exits as two species
 - dissolved CO₂
 - true carbonic acid
 - we use H₂CO₃* to signify the sum of the two

Carbonic Acid

- The true acidity constant:
- Hydration equilibrium
- Total analytical concentration is essentially the dissolved carbon dioxide
- Then, the effective constant, K₁, is:

$$K_{H_2CO_3} = \frac{[H^+][HCO_3^-]}{[H_2CO_3]} = 10^{-3.5}$$

$$K_{CO_2} = \frac{[H_2CO_3]}{[CO_{2(aq)}]} = 10^{-2.8}$$
$$[CO_{2(aq)}] = 630[H_2CO_3]$$

$$[H_2CO_3^*] \equiv [CO_{2(aq)}] + [H_2CO_3] \cong [CO_{2(aq)}]$$

$$K_1 = \frac{[H^+][HCO_3^-]}{[H_2CO_3^*]} \cong K_{H_2CO_3} K_{CO_2} = 10^{-6.3}$$

Equilibria & Mass Balance

• For the carbonate system: $C_T = [H_2CO_3^*] + [HCO_3^-] + [CO_3^{-2}]$

$$\alpha_0 \equiv \frac{[H_2 C O_3^*]}{C_T} = \frac{1}{1 + \frac{K_1}{[H^+]} + \frac{K_1 K_2}{[H^+]^2}}$$

$$\alpha_{1} \equiv \frac{[HCO_{3}^{-}]}{C_{T}} = \frac{1}{\frac{[H^{+}]}{K_{1}} + 1 + \frac{K_{2}}{[H^{+}]}} \qquad \alpha_{2} \equiv \frac{[CO_{3}^{-2}]}{C_{T}} = \frac{1}{\frac{[H^{+}]^{2}}{K_{1}K_{2}} + \frac{[H^{+}]}{K_{2}} + 1}$$

$$\alpha_2 \equiv \frac{[CO_3^{-2}]}{C_T} = \frac{1}{\frac{[H^+]^2}{K_1 K_2} + \frac{[H^+]}{K_2} + 1}$$

- where for closed systems C_T is constant
 - e.g., groundwaters, water distribution systems, rapid laboratory titrations
- for open system C_T is variable
 - surface fresh waters, ocean waters

Topics Covered

- Open system equations
 - log transforms for Log C vs. pH diagram
- Preparation and use of open system Log C vs. pH diagram
 - Note major features
 - problems
 - pure rainwater
 - waters with alkalinity
 - 10⁻²M KOH solution left on bench over weekend

The Closed Carbonate System

Tableaux

	Components		H ₂ CO ₃	H ⁺	Log K
	(0	H_2CO_3	0	0	0
	Species	HCO ₃ -	1)——	(-1)	-6.35
		CO ₃ -2	1	-2	-16.68
		OH-	0	-1	-14
		H ⁺	0	1	0
	Total		10 ⁻³	0	
$10^{-6.35}$		$[O_3^-][H^+]$ $[I_2CO_3]$	<u></u>	/	/
			$=[H_2CO_3]$	H^+	$10^{-6.35}$

Open System: Gas Transfer Equilibrium

- Dimensionless Partition Coefficient, K_D
- From which we get the Henry's Law Constant, K_H
 - using the ideal gas law
 - and applying it to CO₂
 - and substituting back in to the K_D equation

$$K_D = \frac{[CO_{2(aq)}]}{[CO_{2(g)}]}$$

$$PV = nRT$$

$$\frac{n}{V} = \frac{P}{RT}$$

$$[CO_{2(g)}] = \frac{p_{CO_2}}{RT}$$

$$K_D = \frac{[CO_{2(aq)}]}{p_{CO_2}}RT$$

$$K_H \equiv \frac{K_D}{RT} = \frac{[CO_{2(aq)}]}{p_{CO_2}} = 10^{-1.5} \frac{M}{atm}$$

 $@25^{\circ}C$

Rain problem

- What is the composition of pure rain (25°C)?
 - What is an "abnormal" rainwater pH?
 - i.e., what was its pH in prehistoric times?
 - Should it be pH 7?
 - What are its principal constituents?
 - Ignore those species that do not affect acid/base equilibria
 - N₂, O₂

Acid Rain in the US

Rain Example (cont.)

- 1. List all species present
 - H⁺, OH⁻, H₂CO₃, HCO₃⁻, CO₃⁻²

- 2. List all independent equations
 - equilibria
 - $K_1 = [H^+][HCO_3^-]/[H_2CO_3] = 10^{-6.3}$
 - $K_2 = [H^+][CO_3^{-2}]/[HCO_3^-] = 10^{-10.3}$
 - $K_w = [H^+][OH^-] = 10^{-14}$
 - mass balances
 - $C = [H_2CO_3] + [HCO_3^{-1}] + [CO_3^{-2}]$
- atmospheric equilibria
 - $\bullet \ [H_2CO_3] = K_H p_{CO_2}$
- charge balance: Σ (cationic species) = Σ (anionic species)
 - $[H^+] = [OH^-] + 2[CO_3^{-2}] + [HCO_3^-]$

Rain Example (cont.)

- 3. Substitute into the Charge Balance
 - $[H^+] = [OH^-] + 2[CO_3^{-2}] + [HCO_3^-]$

• $[H^+] = [OH^-] + 2\alpha_2 C_T + \alpha_1 C_T$

$$[H^{+}] = \frac{K_{w}}{[H^{+}]} + 2\frac{\alpha_{2}K_{H}p_{CO_{2}}}{\alpha_{0}} + \frac{\alpha_{1}K_{H}p_{CO_{2}}}{\alpha_{0}}$$

- Solving gives us:
 - pH = 5.65
 - $[H_2CO_3] = 10^{-5}$
 - $[HCO_3^{-1}] = 10^{-5.65} = 2.24 \times 10^{-6}$
 - $[CO_3^{-2}] = 4.3 \times 10^{-11}$
- What is C_T and TIC?
 - $C_T = 10^{-5} + 2.24 \times 10^{-6} + 4.3 \times 10^{-11} = 1.22 \times 10^{-5}$
 - TIC = 0.146 mg/L

 But this time let's use the alpha equation in place of the equilibria

$$\alpha_{0} = \frac{[H_{2}CO_{3}^{*}]}{C_{T}} = \frac{1}{1 + \frac{K_{1}}{[H^{+}]} + \frac{K_{1}K_{2}}{[H^{+}]^{2}}}$$

$$\alpha_{2} = \frac{[CO_{3}^{-2}]}{C_{T}} = \frac{1}{\frac{[H^{+}]^{2}}{K_{1}K_{2}} + \frac{[H^{+}]}{K_{2}} + 1}}$$

$$\alpha_{1} = \frac{[HCO_{3}^{-}]}{C_{T}} = \frac{1}{\frac{[H^{+}]}{K_{1}} + 1 + \frac{K_{2}}{[H^{+}]}}}$$

- and the gas transfer
 - $[H_2CO_3] = K_H p_{CO_2}$
 - $\alpha_{o}C_{T} = K_{H}p_{CO_{2}}$
 - $C_T = K_H p_{CO_2} / \alpha_o$

David Reckhow

Pepsi Problem

- pH 2.5 (mostly phosphoric acid)
- 2.5 gas volumes (CO₂)

The Closed Carbonate System

• To next lecture