

CEE 680: Water Chemistry

Lecture #19 MINEQL: Intro & Tutorial Benjamin; Chapter 6

MINEQL today

- MINEQL is available from Environmental Research Software:
 - https://www.mineql.com/
- Two options
 - Old DOS version (3.01) was available free of charge
 - A recent Windows version (4.6) has been available
 - I've acquired this version for our class use
 - Newest version (5.0) is now available
 - But we don't have a copy of this one yet (\$635)

MINEQL species

- <u>Type-I</u> Species: soluble species that comprise the basic components of the solution and its solutes. These must be a collection of independent species. Species that are merely combinations of previously specified Type-I species should not be included.
- <u>Type-II</u> Species: aqueous complexes that form from the Type-I species.
- <u>Type-III</u> Species: solids or other substances with fixed activity (e.g., precipitates that never completely dissolve, atmospheric gases, pH in a pH-controlled environment)
- <u>Type-IV</u> Species: precipitates that could become completely dissolved and therefore go from an activity of one to zero
- <u>Type-V</u> Species: substances that could precipitate, but do not yet exist as a precipitate
- <u>Type-VI</u> Species: substances that are not considered in the calculations

Example Problem

Example Problem

Exact solution

Species	Conc (M)	pC
H+	3.613x10 ⁻¹¹	10.4421
CN-	4.724x10 ⁻³	2.3257
HCN	2.768x10 ⁻⁴	3.5579
OH-	2.768x10 ⁻⁴	3.5579

Example 1a (V 4.6)

- Determine the complete species composition from the addition of 5x10⁻³ moles of NaCN to 1 liter of water.
 - When you launch MINEQL, it should go right to the "select components" screen
 - If it doesn't, you can get there by selecting: Model>Select components
 - This screen contains the Type-I components, which can be selected by clicking on the check-boxes. The components, H₂O and H(+) and already selected for you.
 - For this problem, you should then add CN(-) and Na(+).
 - Note that OH(-) is not a selection, because it can be obtained by taking an H(+) away from H₂O so that it is not a independent substance. The same is true for HCN (it can be obtained by combining CN(-) and H(+).)

Select Components

📇 Chemical Compo		٦×			
Scan THERM	0 Ġ New 🖒 F	Return 📕 Edit M	lode 🧳 Help		
Se	lect Comp	onents fo	r Calculat	tion	
					-
🗖 e(-)	🔽 H20	∨ H(+)	🗖 PSIO	🗖 PSIB	_
🗖 SOH	🗖 Ag(+)	🗖 AI(3+)	🗖 AsO3(3-)	🗖 As04(3-)	
🗖 Au(+)	🗖 Ba(2+)	🗖 Be(2+)	🗖 Br(-)	🗖 В(ОН)З	
🗖 Ca(2+)	🗖 Cd(2+)	🗖 Ce(3+)	🗖 CI(-)	🔽 CN(-)	
🗖 OCN(-)	🗖 SCN(-)	🗖 CO3(2-)	🗖 Co(2+)	🗖 Co(3+)	
🗖 CrO4(2-)	🗖 Cr(2+)	🗖 Cr(OH)2(+)	🗖 Cs(+)	🗖 Cu(2+)	
🗖 Cu(+)	🗖 Fe(2+)	🗖 Fe(3+)	🗖 F(-)	🗌 Hg2(2+)	
🗖 Hg(OH)2	🗖 I(-)	🗖 K(+)	🗖 La(3+)	🗖 Li(+)	
🗖 Mg(2+)	🗌 Mn(2+)	🗖 Mn(3+)	🗖 MoO4(2-)	🔽 Na(+)	
NH20H	🗖 NH4(+)	🗖 Ni(2+)	🗖 NO2(-)	🗖 NO3(-)	
🗖 P207(4-)	🗖 P3010(5-)	🗖 Pb(2+)	🗖 PO4(3-)	🗖 Rb(+)	
🗖 S(0)	🗖 \$203(2-)	🗖 ЅЬ(ОН)З	🗖 ЅЬ(ОН)6(-)	🗖 Sc(3+)	•
cknow					

Example 1b (V 4.6)

- To move on to the Type-II species and the thermodynamic database, hit the "Scan Thermo" button
 - This will show the additional species that will form, along with equilibrium constants needed to calculate their concentrations.
 - This screen is also the place where you tell MINEQL how much of each component you're adding
 - Now move the cursor over to the total concentration line. Keep H_2O and H(+) at zero, but type in 5E-3 for the concentration of CN(-) and the same for Na(+).
- Hit the close button to move on to the next screen
- Select the "Fixed Solids" (i.e., Type-III species). Place the cursor on the pH line and hit the "move" button. Select "move to "species not considered (or included). These are "Type-VI" species. This is necessary, because we don't want to force the pH to stay at any particular level. In fact, one of the purposes of this problem is to determine what the final pH will be.
- You can also do this with the "Wizard"
 - Check the button, asking MINEQL to calculate pH

🚟 Type II - Ad	queous Species						_1	
🕂 Insert	Delete	D Move	Close	Wizard	?	Help		
Name		H20	H(+)	CN(-)		Log K	Delta H	∟ ≜
OH-	(-1)	1	-1	0	-	-13.997	13.339	
HCN (aq)		0	1	1		9.2100	-10.428	
		,						-
Total C	onc. (M)>	0.000E+00	0.000E+00) 0.000E+	00			
		•			Þ			

eous Species						_ 🗆	×
Delete	Move	🔓 Close	Wizard	ЗH	elp		
	H(+)	CN(-)	Na(+)		Log K	Delta H	Ĥ
(-1)	-1	0	0		13.997	13.339	П
	1	1	0	9	9.2100	-10.428	
							-
nc. (M)>	0.000E+00	5.000E-03	3 5.000E-	03			
	•			►			
	hc. (M)>	Image: Species Image: Delete Image: Move H[+] -1 1 1 Image: No. (M)> 0.000E+00	Jelete J Move Close H(+) CN(-) (-1) -1 0 1 1 I 1 No.e 0.000E+00 5.000E-03 I I	Image: Provide a state of the state of	H(+) CN(-) Na(+) (-1) -1 0 0 - 1 1 0 9 - - 0 0 - - - - - 0 0 0 - - - - - 0 0 0 -	Move Close Wizard Help H(+) CN(-) Na(+) Log K (-1) -1 0 0 -13.997 1 1 0 9.2100 Image: No.ex (M)> 0.000E+00 5.000E-03 5.000E-03	

David Reckhow

CEE 680 #19

Example 1c (V 4.6)

- Hit "close" and then "no" to arrive at the "run time manager"
 - Type in an output data name
 - Keep "ionic strength corrections", "temperature corrections" and "adsorption model" off
 - Hit the "Run" button
- Select "output manager" to view model results
 - Header gives input data
 - Component Groups has concentrations in a convenient tabular form

Example 1d (V 4.6)

After the run is complete (should only take a second or two), select "output manager". Under "MINEQL object" select your output file name. Under "member" select "S1.H(+)". Then under "row type" select "species" and under "display criteria" choose "runi". This will display the concentrations of all species containing an exchangeable proton (i.e., H+). Copy down the relevant information. Ignore the line labeled "pH". Repeat this process, but this time choose "S1.CN(-)" under the "member" category. This time you will see data on all species that contain the cyanide group (i.e., CN).

Output Type: Component Groups

• Data Object: CN(-)

🗮 OUT2	2.MDO foi	r CN(-):Run 1								_0_×
Save	Print	Clip Board	Help Col Xtract							
	I	Obs.	Species ID	Name	Type	I	Conc.	LogC	LogK	%Total
1 2 3 4		1 1 1	20 CN(-) 30400 HCN (a 224100 NaCN (600020 TOTAL	aq) (cubic) CN(-)		1 2 5 7	0.00472 0.000278 0.005	-2.33 -3.56 -6.23 -2.3	0 9.21 -1.6	94.4 5.6 100
	•									•

Output Type: Component Groups

• Data Object: Na(+)

🗮 OUT2	2.MDO for	Na(+):Run 1										_	
Save	Print	Clip Board	Help	Col Xtrac	t								
	I	Rbs.	Species	ID	Name	I	Type	I	Conc.	LogC	LogK	%Total	I
1 2 3		1 1 1	2241 6000	45 Na(.00 NaC)45 TOT	+) XN (cubic) AL Na(+)		1		0.005 0.005	-2.3 -6.23 -2.3	0 -1.6 	100 100	
	•												•

Output Type: Component Groups

• Data Object: H(+)

🚟 OU	T2.MD0 fo	r H(+):Run 1											_	
Save	Print	Clip Board	Help	Col Xtract										
	I	Obs.	Species	ID	Name	I	Туре	I	Conc.	LogC	I	LogK	%Total	1
1 2 3 4 5 6	×	1 1 1 1 1	31 30 175 900 600	3 H(+) 800 OH- 400 HCN (a 310 pH 003 Activi 003 TOTAL	q) ty of H+ H(+)	(-1) (+1)		1 2 2 6 7 7	3.63e-11 0.000278 0.000278 0.000363 3.63e-11 -8.58e-13	$\begin{vmatrix} & -10 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -10 \\ & -12 \\ \end{vmatrix}$	4 56 14 4 1	0 -14 9.21 7 0	0 0 100	

Input data summary

• Output type: Header

🗮 OUT2	.MDO HI	EADER						
Save	Print	Clip Board	Help]				
Oct MIN	05, 2 EQL+ H	2006 19:58 Header file	for o	ut2.mdo				
ffffff OPTION ffffff f f f f f f f f f f f f f f f	\$0 ffffff S: I ffffff ffffff 1.00 1.00 5.01 5.01	\$\$ INPUT E fifffifififi ADS= 0 IONI ADS= 0 IONI IPHB= 0 IT fifffifififi ELECTF TEMPERA IONIC NO SUF X IC DD-20 -20. DD-07 -7. LD-05 -4.	DATA \$ ifififi T TTL= 0 'ITL= 0 ifififi 0 COLUTE 0 STRENG 0 PFACE M EPS = OX 1 00 1 30 5 30 5	\$\$ iffififififi ONPH= 0 IPH IPCP=0 ICH iffififififi ALITY NOT C = 25.0 CEI TH CORRECTI ODEL USED 1.0E-04 T .000E-18 .000E-18 .000E-03 .000E-03	IIIIIIIIIII IFX= 0 IPHA ID=0 IIIIIIIIIIIII SUARANTEED SSIUS CONS OFF COMPONEN H20 H(+) CN(-) Na(+)	1111111111111 = 0 111111111111111 TS	:11111 :11111	
ID 10 10 10 10 10 10 10 10 10 10 10 10 10	NAM 2 H2O 3 H(+) 0 CN(- 5 Na(+	4E) -) +)		LOGK .000 .000 .000 .000	DELH .000 .000 .000 .000	SPECIES: H2O H(+) CN(-) Na(+)	TYPE I - COMPONENTS 1.0 1.0 1.0 1.0	
ID 380 3040	NA) 0 OH- 0 HCN	fE (aq)	(-1)	LOGK -13.997 9.210	DELH 13.339 -10.428	SPECIES: H2O H(+)	TYPE II - COMPLEXES 1.0 H(+) -1.0 1.0 CN(-) 1.0	
ID 380	NAN 1 H2O	fE (Solution)		LOGK .000	DELH .000	SPECIES: H2O	TYPE III - FIXED SOLIDS 1.0	
ID 22410	NAN 0 NaCl	ME N (cubic)		LOGK -1.601	DELH 232	SPECIES: CN(-)	TYPE V - DISSOLVED SOLIDS 1.0 Na(+) 1.0	
ID 17531	אאא Hק 0	ſΕ	(+1)	LOGK 7.000	DELH .000	SPECIES: H(+)	TYPE VI - SPECIES NOT CONSIDE 1.0	RED

David Reckhow

ъĒ

Example 1a (V 3.01)

- Determine the complete species composition from the addition of 5x10⁻³ moles of NaCN to 1 liter of water.
 - Go to the "Data/Run" menu and choose "components". Select the Type-I components by highlighting the desired species and hitting "return". The components you should select are: H₂O (almost always a selection), H(+), CN(-) and Na(+). Note that OH(-) is not a selection, because it can be obtained by taking an H(+) away from H₂O so that it is not a independent substance. The same is true for HCN (it can be obtained by combining CN(-) and H(+).)

Example 1b (V 3.01)

- While still in the Type-I components mode, hit F2. This selects from the thermodynamic database the equilibrium constants you will need and presents them in a table entitled "Type-II Chemical Complexes". Now hit F2 three times to bring the cursor to the total concentration line. Keep H2O and H(+) at zero, but type in 5E-3 for the concentration of CN(-) and the same for Na(+).
- Escape from the "Complexes" table and select "Fixed Solids" (i.e., Type-III species). Highlight the pH line and hit "F3" which is the "move" key. Choose to move pH to "Type-VI" species. This is necessary, because we don't want to force the pH to stay at any particular level. In fact, one of the purposes of this problem is to determine what the final pH will be.

Example 1c (V 3.01)

 Escape from "Fixed Solids" and select "Run". Keep "μ corrections" (ionic strength corrections) off, and keep the temperature at 25°C. Shift over to the "file output" line and select a name for the file where the results of your run will be stored. Then select "run".

Example 1d (V 3.01)

After the run is complete (should only take a second or two), select "output manager". Under "MINEQL object" select your output file name. Under "member" select "S1.H(+)". Then under "row type" select "species" and under "display criteria" choose "run1". This will display the concentrations of all species containing an exchangeable proton (i.e., H+). Copy down the relevant information. Ignore the line labeled "pH". Repeat this process, but this time choose "S1.CN(-)" under the "member" category. This time you will see data on all species that contain the cyanide group (i.e., CN).

Review old exams

- Refer to web site: Exam #1
 - Many since 2007
 - Fall 2007 and solution
 - Fall 2006 and solution

