Lecture #17

Acids/Bases and Buffers: Fundamentals & Buffer Intensity

(Benjamin, Chapter 5)

(Stumm & Morgan, Chapt. 3)
Buffer Intensity

- Amount of strong acid or base required to cause a specific small shift in pH

\[\beta = \frac{dC_B}{dpH} = - \frac{dC_A}{dpH} \]
Buffers: Acetic Acid with Acid/Base Addition

1. List all species present
 - (use NaOH and HCl as acid/base)
 - H^+, OH^-, HAc, Ac^-, Na^+, Cl^-

2. List all independent equations
 - **equilibria**
 - $K_a = \frac{[\text{H}^+][\text{Ac}^-]}{[\text{HAc}]} = 10^{-4.77}$
 - $K_w = [\text{H}^+][\text{OH}^-] = 10^{-14}$
 - **mass balances**
 - $C_T = [\text{HAc}]+[\text{Ac}^-]$
 - **electroneutrality:** Σ(positive charges) = Σ(negative charges)
 - Note: we can’t use the PBE because we’re essentially adding an acid and its conjugate base
 - $[\text{Na}^+] + [\text{H}^+] = [\text{OH}^-] + [\text{Ac}^-] + [\text{Cl}^-]$
Acetic Acid with Acid/Base Addition (cont.)

3. Use ENE, substitute & solve for $C_B - C_A$

- $[Na^+] + [H^+] = [OH^-] + [Ac^-] + [Cl^-]$

- $C_B + [H^+] = \frac{K_w}{[H^+]} + \frac{K_a C_T}{K_a + [H^+]} + C_A$

- $C_B - C_A = \frac{K_w}{[H^+]} - [H^+] + \frac{K_a C_T}{K_a + [H^+]}$

4. Take derivative
 - with respect to $[H^+]$

$K_w = [H^+][OH^-]$
$[OH^-] = \frac{K_w}{[H^+]}$
$C_A = [Cl^-]$
$C_B = [Na^+]$
$C_T = [HAc] + [Ac^-]$
$[HAc] = C_T - [Ac^-]$
$K_a = \frac{[H^+][Ac^-]}{[HAc]}$
$K_a = \frac{[H^+][Ac^-]}{[C_T - [Ac^-]]}$
$K_a C - K_a [Ac^-] = [H^+][Ac^-]$
$K_a C = [Ac^-] \frac{K_a + [H^+]}{K_a C_T}$
$[Ac^-] = K_a C_T \frac{K_a + [H^+]}{K_a C_T}$
Acetic Acid with Acid/Base Addition (cont.)

- Take the derivative with respect to $[H^+]$ of:

 \[CB = C_A + K_w/[H^+] - [H^+] + K_aC_T/[K_a+[H^+]] \]

 \[
 \frac{dC_B}{d[H^+]} = -\frac{K_w}{[H^+]^2} - 1 - \frac{C_TC_a}{(K_a+[H^+])^2}
 \]

- But this is not exactly what we want

- Factor out β equation

 \[
 \beta = \frac{dC_B}{dpH} = \frac{dC_B}{d[H^+]} \times \frac{d[H^+]}{dpH}
 \]

- and recall:

 \[
 pH = -\log[H^+] = -\frac{\ln[H^+]}{2.303}
 \]

 \[
 dpH = -\frac{d \ln[H^+]}{2.303} = \frac{d[H^+]}{2.303[H^+]} \]

 \[
 \frac{d[H^+]}{dpH} = -2.303[H^+] \]
Acetic Acid with Acid/Base Addition (cont.)

- so:

\[\beta = -2.303[H^+] \frac{dC_B}{d[H^+]} \]

- and combining:

\[\beta = -2.303[H^+] \left(-\frac{K_w}{[H^+]^2} - 1 - \frac{C_T K_a}{(K_a + [H^+]^2)^2} \right) \]
\[= 2.303 \left(\frac{K_w}{[H^+]^2} + [H^+] + \frac{C_T K_a [H^+]}{(K_a + [H^+]^2)^2} \right) \]

\[\beta = 2.303 ([OH^-] + [H^+] + C_T \alpha_0 \alpha_1) \]
\[\beta = 2.303 \left([OH^-] + [H^+] + C_T \frac{[HA][A^-]}{([HA] + [A^-])^2} \right) \]
Example

- Trichlorophenol
 - pKa = 6.00
 - $C_T = 10^{-2}$
See also S&M fig 3.10
Equations for polyprotic acids

- Analogous to the monoprotic systems

 - **monoprotic**
 \[
 \beta = 2.303 ([OH^-] + [H^+] + C_T \alpha_0 \alpha_1)
 \]

 - **diprotic**
 \[
 \beta \approx 2.303 ([OH^-] + [H^+] + C_T \alpha_0 \alpha_1 + C_T \alpha_1 \alpha_2)
 \]

 - **triprotic**
 \[
 \beta \approx 2.303 ([OH^-] + [H^+] + C_T \alpha_0 \alpha_1 + C_T \alpha_1 \alpha_2 + C_T \alpha_2 \alpha_3)
 \]
Buffer example

- Design a buffer using phosphate that will hold its pH at \(7.0 \pm 0.05\) even when adding \(10^{-3}\) moles per liter of a strong acid or base
 - first determine the required buffer intensity
 \[
 \beta = \frac{dC_B}{dpH} = \frac{10^{-3}}{0.05} = 0.02
 \]
 - Next look at the buffer equation and try to simplify based on pH range of interest
 \[
 \beta \approx 2.303\left(\left[OH^-\right] + \left[H^+\right] + C_T\alpha_0\alpha_1 + C_T\alpha_1\alpha_2 + C_T\alpha_2\alpha_3\right)
 \]

\[0 \quad 0 \quad 0 \quad 0 \quad 0\]
Buffer example (cont.)

- This gives us the simplified version that can be further simplified

\[
C_T \approx \beta / 2.303(\alpha_1 \alpha_2)
\]

\[
\approx 0.02 / 2.303 \left[\left(\frac{[H^+]}{K_1} + 1 + \frac{K_2}{[H^+] + \frac{K_2 K_3}{[H^+]^2}} \right)^{-1} \left(\frac{[H^+]}{K_1 K_2} + \frac{[H^+]}{K_2} + 1 + \frac{K_3}{[H^+] \right)^{-1} \right]
\]

\[
\approx 0.02 / 2.303 \left[\left(1 + \frac{K_2}{[H^+]} \right)^{-1} \left(\frac{[H^+]}{K_2} + 1 \right)^{-1} \right]
\]

\[
\approx 0.02 / 2.303 \left(4.22 \right)^{-1}
\]

\[
\approx 0.037 M
\]
Acid Neutralizing Capacity

- Net deficiency of protons
 - with respect to a proton reference level
 - when the reference level is H_2CO_3, the ANC=Alkalinity
 - conservative, not affected by T or P

- In a monoprotic system:
 - $[\text{ANC}] = [A^-] + [\text{OH}^-] - [H^+]$
 - $= C_T \alpha_1 + [\text{OH}^-] - [H^+]$

\[
[\text{ANC}] = \int_{f=n}^{f=x} \beta dpH
\]
• To next lecture