

Defining the Titration Curve

- A titration is complete when the equivalents of titrant (t) added equals the equivalents of sample (s) originally present
 - $equ_t = equ_s$
 - $V_t N_t = V_s N_s$
- we can define the extent of a base titration as:

$$f = \frac{V_B N_B}{V_s M_s} = \frac{equ_B}{moles_s}$$

- At any point from the start of the titration, we have a mixed solution of the acid and conjugate base
 - We must use the ENE in place of the PBE

David Reckhow

CEE 680 #16

3

Defining the Titration Curve (cont.)

- The ENE is:
 - for this problem (titration of HAc with NaOH):
 - $[Na^+] + [H^+] = [Ac^-] + [OH^-]$
 - and in general, for a base titration:
 - $C_B = [Na^+] = [A^-] + [OH^-] [H^+]$
- and combining with the definition for f:

$$f = \frac{V_B N_B}{V_s M_s} = \frac{equ_B}{moles_s} = \frac{C_B}{C_T}$$

$$= \frac{[A^-] + [OH^-] - [H^+]}{C_T}$$

$$= \alpha_1 + \frac{[OH^-] - [H^+]}{C_T}$$

Amount of base added at any point during the titration in equivalents/liter

Amount of acid originally present in moles/liter (which is the same as the total of acid + conjugate base present throughout)

David Reckhow

CEE 680 #16

Reverse Titration (acid)

- The reverse titration is the addition of a strong acid (e.g., HCl) to the fully titrated acetic acid (e.g., NaAc). This re-forms the original HAc and produces NaCl too.
- we can define the extent of an acid titration as:

$$g = \frac{V_A N_A}{V_s M_s} = \frac{equ_A}{moles_s}$$

- As with the forward titration, we have a mixed solution of the acid and conjugate base
 - We must use the ENE in place of the PBE

David Reckhow

CEE 680 #16

7

Reverse titration (cont.)

- The ENE is:
 - for this problem (titration of NaAc with HCl):
 - $[Na^+] + [H^+] = [Ac^-] + [OH^-] + [Cl^-]$ \longrightarrow $[Cl^-] = [Na^+] [Ac^-] + [H^+] [OH^-]$
 - and for an acid titration of a pure base (Na form):
 - $C_T = [HA] + [A^-] = [Na^+]$ $C_A = [Cl^-] = [HA] + [H^+] [OH^-]$
- and combining with the definition for g:

$$g = \frac{V_A N_A}{V_s M_s} = \frac{equ_A}{moles_s} = \frac{C_A}{C_T}$$
Amount of acid added at any point during the titration in equivalents/liter
$$= \frac{[HA] + [H^+] - [OH^-]}{C_T}$$
Amount of base originally present in moles/liter (which is the same as the total of acid + conjugate base present throughout)

David Reckhow

CEE 680 #16

- For a monoprotic acid/base:
 - f + g equals 1 throughout a titration

$$f + g = \alpha_1 + \frac{[OH] - [H^+]}{C_T} + \alpha_0 + \frac{[H^+] - [OH^-]}{C_T}$$

$$= \alpha_1 + \alpha_0$$

$$= 1$$

David Reckhow

CEE 680 #16

pH Buffers & Buffer Intensity

- Definitions
 - Buffer: a solution that resists large pH changes when a base or acid is added
 - · commonly a mixture of an acid and its conjugate base
 - Buffer Intensity: the amount of strong acid or strong base required to cause a small shift in pH
- Significance
 - Natural Waters
 - · wide range
 - poorly buffered waters are susceptible to acid precipitation

David Reckhov

CEE 680 #16

Henderson-Hasselbalch Equation

- Classic H-H equation
 - Just a re-arrangement of equilibrium equation
 - Always correct

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

- Empirical H-H

• Assumes buffer salts swamp H+ and OH-
$$pH = pK_a + \log \frac{C_A}{C_{HA}}$$

Lawrence Henderson was a biochemist, born 3 Jun 1878 in Lynn MA, established the fatigue lab at Harvard
David Reckhow CEE 680 #16

Simplified HAc/NaAc Example (cont.)

- Solution #1
 - C_{NaAc} (= C_A) = 10 mM
 - C_{HAc} (= C_{HA}) = 10 mM

$$pH = pK_a + \log \frac{C_A}{C_{HA}}$$
$$= 4.7 + \log \frac{10}{10}$$

- Solution #2
 - C_{NaAc} (= C_A) = 20 mM
- C_{HAc} (= C_{HA}) = 2 mM $pH = pK_a + \log \frac{C_A}{C_{HA}}$

$$=4.7+\log\frac{20}{2}$$

= 5.7

Observations

Check Assumptions

1. pH = pK_a, when equal amounts of acid and conjugate base are added 2. pH is independent of C_T (eventually at low C_T this breaks down)

David Reckhow

CEE 680 #16

17

Exact Solutions: Summary

- Monoprotic
 - Acids:

•
$$[H^+]^3 + {K_a}[H^+]^2 - {K_w + K_a C}[H^+] - {K_w K_a} = 0$$

• Bases:

•
$$[H^+]^3 + \{C + K_a\}[H^+]^2 - \{K_w\}[H^+] - K_W K_a = 0$$

Mixed Acid/Bases (i.e., buffers):

$$\bullet \ \ [H^+]^3 + \{ {\color{red} \pmb{C_{A}}} + K_a \} [H^+]^2 - \{ K_w + K_a {\color{red} \pmb{C_{HA}}} \} [H^+] - K_W K_a = o$$

David Reckhow

CEE 680 #16

9

